
Efficient Triangle Reordering for

Improved Vertex Cache Utilisation in

Realtime Rendering

Martin Storsjö

Master of Science Thesis

Supervisor: Tomi Aarnio, Tero Nordström, Nokia

Examiner: Jan Westerholm

Department of Information Technologies

Faculty of Technology

Åbo Akademi University

Abstract

Storsjö, Martin: Efficient Triangle Reordering for Improved Vertex Cache Utili-

sation in Realtime Rendering

Master’s Thesis, Department of Information Technologies, Faculty of Technology,

Åbo Akademi University, 2008. 100 pages, 18 figures, 14 tables.

Keywords: Vertex cache, embedded, mobile, overdraw, M3G, computer graphics

In this thesis, realtime rendering optimisations based on the reordering of data

and changing of data format are evaluated. The optimisations include improved

vertex cache utilisation, overdraw reduction, improved vertex data read patterns

and conversion of inefficient triangle strips into triangle lists. The improvements

are evaluated by integrating them into existing high-level 3D graphics frameworks

for embedded environments such as M3G. In particular, fast algorithms for re-

ordering triangles in order to improve the utilisation of vertex caches are studied.

The memory usage and run time performance of the algorithms are improved by

making small compromises in the end result.

I

Acknowledgements

When describing this thesis, there is one name which should be mentioned above

all other, Tomi Aarnio. Tomi has helped immensely while I have been implement-

ing, testing and evaluating these optimisations. Without his in-depth knowledge

and experience, this thesis would never have turned out the way it did. In fact, I

would not even have known about this subject if he would not have pointed out

this as an area I could research.

Additionally, I would also like to thank Tero Nordström for all the support and

help during the whole process, Jan Westerholm for all the helpful directions and

comments and Mia Westerlund and Johan Schöring for proofreading all this. I

would also like to thank Nokia for sponsoring this research and the Stanford 3D

Scanning Repository, Kishonti Informatics LP and HI Corporation for the test

models I have been using.

Åbo, May 13, 2008

Martin Storsjö

II

Contents

Abstract I

Acknowledgements II

Contents III

List of Figures VII

List of Tables VIII

Listings IX

Abbreviations X

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis structure . 2

2 Realtime rendering 3

2.1 3D graphics APIs . 3

2.2 Triangle meshes . 4

2.2.1 Mesh geometry . 4

2.2.2 Triangle data formats . 4

2.2.3 Mesh drawing . 7

III

3 Ordering and format optimisations 8

3.1 Caching of transformed vertices 8

3.1.1 Vertex transforming overhead 8

3.1.2 Previous work . 9

3.1.3 Measuring vertex caching 9

3.1.4 Triangle reordering algorithms 10

3.2 Vertex reordering . 11

3.3 Overdraw reduction . 11

3.4 Triangle data formats . 12

4 Problem statement and evaluation criteria 14

4.1 Problem statement . 14

4.2 Evaluation criteria . 15

5 Triangle reordering algorithms 16

5.1 The tipsify algorithm . 16

5.2 Forsyth’s reordering algorithm . 19

5.2.1 Score function . 21

5.3 View independent overdraw reduction 23

6 Memory usage 25

6.1 The tipsify algorithm . 26

6.2 Forsyth’s reordering algorithm . 28

7 Test setup 31

7.1 Test environments . 31

7.2 Test models . 32

8 The behaviour of the tipsify algorithm 34

8.1 Simulation results . 34

8.2 Choosing the optimal tipsify parameter 36

IV

9 Algorithm improvements and compromises 39

9.1 The tipsify algorithm . 39

9.1.1 Dead-end stack . 39

9.1.2 Estimating the number of uncached vertices 41

9.2 Forsyth’s reordering algorithm . 45

9.2.1 Shrinking the cache table 45

10 Comparison between tipsify and Forsyth’s algorithm 48

10.1 Similarities and differences . 48

10.2 Simulated results . 49

10.3 Algorithm run time performance 49

10.4 Comparison conclusions . 51

11 Rendering performance tests 53

11.1 Triangle reordering . 53

11.2 Vertex reordering . 55

11.3 Overdraw reduction . 56

11.3.1 Practical issues . 58

12 M3G integration 59

12.1 General . 59

12.2 Integration . 60

12.2.1 Vertex reordering . 61

12.3 Testing of simple static M3G files 61

12.4 Testing of ordinary applications 64

13 Conclusions 66

13.1 Summary of results . 66

13.2 Future work . 67

Swedish summary 69

V

Bibliography 75

A Implementation of the tipsify algorithm 77

B Implementation of Forsyth’s algorithm 83

VI

List of Figures

2.1 Illustration of mesh data formats 6

5.1 The main work flow in the tipsify algorithm 17

5.2 The score functions in Forsyth’s algorithm 22

7.1 Test models from Stanford . 32

7.2 M3G test models . 32

8.1 General properties of tipsify . 35

8.2 The effect of the tipsify target size on various platforms 37

9.1 The impact of removing or shrinking the dead-end stack 41

9.2 Comparison of the behaviour of tipsify on different models 42

9.3 Different cases when estimating the number of uncached vertices . 43

9.4 Comparison of tipsify estimate variants 44

9.5 Two variants of the cache score function 46

9.6 Effect of smaller cache in Forsyth’s algorithm simulated on large

caches . 46

9.7 Effect of smaller cache in Forsyth’s algorithm simulated on small

caches . 47

10.1 Comparison of ACMR between tipsify and Forsyth’s algorithm . . 50

10.2 Run times as a function of the mesh size 52

11.1 Rendering time as a function of the ACMR 54

12.1 Example of shared objects in M3G 62

VII

List of Tables

6.1 Original tipsify memory usage . 27

6.2 Memory usage of Forsyth’s algorithm 29

7.1 Test model information . 33

10.1 Run times for the different algorithms 51

11.1 Frame rates for triangle orderings 53

11.2 Frame rates for vertex orderings on E51 55

11.3 Frame rates for vertex orderings on laptop chipsets 56

11.4 Potential gains in reducing overdraw 57

12.1 M3G Benchmarks on E51 . 62

12.2 M3G Benchmarks on E65 . 63

12.3 M3G Benchmarks on E90 . 63

12.4 JBenchmark HD test results . 65

12.5 JBenchmark PRO test results . 65

12.6 Ducati 3D Extreme test results 65

VIII

Listings

5.1 Original tipsify pseudocode . 18

5.2 Pseudocode for Forsyth’s algorithm 20

A.1 Sample implementation of Tipsify 77

B.1 Sample implementation of Forsyth’s algorithm 83

IX

Abbreviations

ACMR Average Cache Miss Ratio

API Application Programming Interface

FIFO First In, First Out

IPT Indices Per Triangle

LRU Least Recently Used

M3G Java Specification Request 184: Mobile 3D Graphics API for

Java ME

X

Chapter 1

Introduction

1.1 Motivation

In recent years, mobile phones have evolved from simple communication appli-

ances to full-featured, general-purpose mobile computers. They are acquiring

more features that were earlier only available on desktop computers in rapid

succession and are merging features from many devices into one single device.

The graphics capabilities of mobile phones have grown in a similar way. Earlier,

the screens were monochrome and had low resolution, capable of displaying a few

rows of text and simple icons. Lately they have grown both in resolution and in

size and become able to display colour with high precision.

As mobile phones become more capable, their software needs to grow to utilise

the capabilities. 3D graphics will play a more important role, both in games and

in the user interface in general. On desktop computers, 3D graphics is used in

almost all commercial computer games at the moment, and mobile games will

probably develop in the same direction. The user interfaces will use 3D graphics

to become more user-friendly, intuitive and visually attractive.

Even though the mobile environments grow to become more capable, they will

always have more limiting factors than the desktop environments. The processing

power and the available memory are usually much more limited than on desk-

top platforms. Battery capacity limits the energy consumption, which indirectly

limits how powerful chips can be used. Optimisations at all levels will still be

necessary, due to the inherent limitations in the mobile environments.

One way of overcoming some of these limitations within realtime rendering of 3D

1

graphics is by effectively utilising the vertex transform caches, as described in

this thesis.

1.2 Thesis structure

Initially, the concepts of realtime 3D graphics needed by the rest of the thesis

are described in chapter 2, followed by a presentation of a few areas where the

rendering overhead can be reduced in chapter 3. The problem the thesis aims at

solving is formulated together with criteria for evaluating the solution in chapter

4.

The algorithms analysed in the thesis, two triangle reordering algorithms for

vertex cache utilisation and one for overdraw reduction, are introduced in chapter

5, followed by an analysis of their initial memory usage in chapter 6. Then the

environments used for testing are described, together with the content used for

the tests, in chapter 7. The specific properties of one algorithm is analysed in

detail in chapter 8. Improvements to the algorithms are presented, including

analysis of the compromises, in chapter 9.

The two algorithms improving the vertex cache utilisation are compared in chap-

ter 10. The rendering time improvements offered by the optimisations are pre-

sented and discussed in chapter 11. Integration into an existing scene graph

framework is discussed and benchmarked in chapter 12, followed by reiteration

of the results of the thesis and pointers on potential future work in chapter 13.

2

Chapter 2

Realtime rendering

The process of creating a viewable image from a geometrical description of the

content is called rendering. Realtime rendering is the case where every image

is rendered immediately when it is to be displayed, with a short rendering time

for each frame. This allows interactive animation for example in games, since

the source data for each rendering can be changed between each rendered frame

based on user input.

The routines for doing rendering can be generalised into reusable libraries, to be

used by many applications and games. Libraries for interfacing with graphics

hardware are usually provided by the hardware vendor. By standardising ap-

plication programming interfaces (API) for these kinds of libraries, applications

need not be tied to any specific implementation but can be portable across both

software and hardware based renderers.

2.1 3D graphics APIs

OpenGL is a cross-platform low-level graphics API, initially introduced by Silicon

Graphics in 1992. Implementations of this API exist for most dominant desktop

platforms (Microsoft Windows, Linux, Apple Mac OS X) and many of the less

dominant platforms. [SAF+06]

OpenGL ES is mainly a subset of OpenGL, intended for implementation on em-

bedded systems. It is a simplified specification, where little-used parts of the

OpenGL standard have been removed, to make implementations smaller with-

out radically compromising features needed in practice. OpenGL ES also in-

cludes some additions needed specifically on embedded platforms. Due to the

3

large similarities between OpenGL and OpenGL ES, large parts of applications

are source-level compatible. Implementations of OpenGL ES are available for

many mobile platforms (Symbian, Microsoft Windows Mobile, Apple iPhone and

BREW among others). [BM07]

M3G (Mobile 3D Graphics) is a slightly higher level API for 3D graphics for

Java Micro Edition (Java ME). It is designed to be a simple but high perfor-

mance API, efficiently implementable on top of OpenGL ES. It provides scene

graph based and immediate mode rendering. To enable efficient and potentially

hardware accelerated implementations, all mesh data is encapsulated into opaque

objects where the data representation is hidden from the user of the API. En-

capsulating the data representation allows for further optimisations of the mesh

data. [AEHR05]

OpenGL ES and M3G are currently the two main cross-platform 3D graphics

APIs for mobile platforms.

2.2 Triangle meshes

2.2.1 Mesh geometry

In most common implementations of realtime 3D graphics, the geometry is con-

structed from a set of vertices and a mesh of polygons defined using the vertices.

Each vertex has a number of attributes: position, normal vector, colour, tex-

ture coordinates etc. For simplicity, many implementations limit the polygons to

triangles, since all polygons can be constructed from one or more triangles.

The number of triangles t can at most be twice the number of vertices v, as

explained by Bar-Yehuda and Gotsman [BYG96]. Therefore, many calculations

can be simplified using the approximation t ≈ 2v.

2.2.2 Triangle data formats

The mesh data can be stored in several different formats. The formats described

below are supported by OpenGL and OpenGL ES. The simplest format is one

where all the vertex data is specified explicitly for all three vertices in each tri-

angle. Instead of explicitly specifying all the vertex data every time a certain

vertex is used, the vertex data can be stored in one separate buffer or a separate

buffer for each vertex attribute, and thus triangles are specified only using vertex

4

indices. This approach has a multitude of advantages, among others it requires

less memory to store the mesh, as explained by Hoppe [Hop99]. Additionally, if

updating the vertex attributes (e.g., when animating a mesh), the data for each

vertex only needs to be updated at one single place in the vertex data buffer.

These formats are illustrated in figure 2.1.

The order in which the vertices within a triangle are specified does matter. By

keeping a consistent ordering, it is possible to differentiate the front side and

back side of triangles by specifying that viewed from their front side triangles are

defined in, for instance, counter-clockwise order.

A potentially more efficient format is the so called triangle strip format. In that

format, a new vertex (either complete set of vertex data or a vertex index) specifies

a new triangle, consisting of the two previous vertices and the newly specified one.

That is, every triplet of consecutive vertices in the strip generates one triangle.

If two of the vertices in a triplet are the same, the triangle is considered to be

degenerate and will not be rendered.

As long as an edge between two vertices is shared by at most two triangles, there

is only one single candidate for the next triangle in a strip when constructing

the strips. When the strip cannot be continued further, a completely new strip

must be created or degenerate triangles must be inserted. Figure 2.1 contains

an example where a mesh is constructed from two separate strips and another

example where the two separate strips have been merged into one single strip

containing degenerate triangles. All triplets up to (5, 3, 6) generate normal

triangles, but the triplets (3, 6, 6), (6, 6, 4), (6, 4, 4) and (4, 4, 7) contain

multiple occurrences of a single vertex, making them degenerate and preventing

them from being rendered.

The winding order is defined to be alternating. Every other triplet (starting with

the first one) generates a triangle with indices in the same order as in the strip,

the rest of the triplets generate triangles with opposite order. Therefore, the

strips in the example generate the triangles (1, 4, 2), (2, 4, 5), (2, 5, 3) and so

on, in correct and coherent winding order. When determining the winding order,

degenerate triangles are included, which allow to determine the winding order of

a triplet directly based on the offset from the start of the triangle strip.

5

v1 v4 v2

v1 v2 v3

v4 v5 v6

v7 v8 v9

T1

T2 T4

T3

T5 T7

T8T6

v2 v4 v5
v2 v5 v3
v3 v5 v6
v4 v7 v5
v5 v7 v8
v5 v8 v6
v6 v8 v9

T1
T2
T3
T4
T5
T6
T7
T8

1 4 2
2 4 5
2 5 3
3 5 6
4 7 5
5 7 8
5 8 6
6 8

v9

T1
T2
T3
T4
T5
T6
T7
T8

v1
v2
v3
v4
v5
v6
v7
v8 9

explicit triangle list indexed triangle list

v1
v4
v2
v5
v3
v6

v4
v7
v5
v8
v6
v9

T1
T2
T3
T4

T5
T6
T7
T8

explicit triangle strips

1
4
2
5
3
6

4
7
5
8
6

v9

T1
T2
T3
T4

T5
T6
T7
T8

v1
v2
v3
v4
v5
v6
v7
v8

9

indexed triangle strips

1
4
2
5
3
6

4
7
5
8
6

v9

T1
T2
T3
T4

T5
T6
T7
T8

v1
v2
v3
v4
v5
v6
v7
v8

9

merged, indexed triangle strips

6
4

winding order

mesh topology

Figure 2.1: Illustration of mesh data formats, based on illustrations by Hoppe

[Hop99].

6

2.2.3 Mesh drawing

When rendering the meshes, one triangle at a time is rasterised and drawn to the

target (either the screen or another buffer), updating the colours of the pixels

covered by the triangle.

A method named depth buffering, z-buffering or depth testing is often used at

this stage of the rendering process. The main concept of the method is keeping

track of the depth coordinate for every rendered pixel while the 3-dimensional

scene is rendered. When a new triangle is rasterised, the depth value for each

pixel is compared to the previous value. Only if the new triangle is closer to

the virtual camera than the current content of that pixel, the pixel colour and

depth value are updated, otherwise the previous colour and depth values are kept

unmodified.

Depth buffering allows the different meshes of a scene to be rendered in any order,

creating the same correct output in all cases. It also allows the triangles within

a mesh to be drawn in any order.

This freedom is not available in all cases, though. When drawing geometry with

blending, where the new colour drawn depends on the previous colour, the draw-

ing order cannot be varied freely without affecting the output result. However,

if depth buffering is disabled and the geometry is drawn with additive blending,

the drawing order can be varied freely.

7

Chapter 3

Ordering and format

optimisations

Below, a few optimisations based on reordering or converting triangle or vertex

data are presented.

3.1 Caching of transformed vertices

3.1.1 Vertex transforming overhead

During rendering, the vertices are transformed from their coordinates within the

object definition to coordinates in the world coordinate system. The 3D world

coordinates are projected into 2D coordinates in a plane, according to the po-

sition, rotation and projection type of the virtual camera. The vertex normal

vectors are transformed according to the object rotation and used for the calcu-

lation of lighting coefficients. These transformations are described in detail in,

for instance, OpenGL R© Programming Guide [SWND05].

The transformations are potentially heavy operations. They are usually imple-

mented with floating point arithmetics, even though the embedded platforms

might lack a hardware floating point unit. For optimal performance, as few

transformations as possible should be made.

Traditionally, rendering has been designed in a pipeline-like fashion, where single

geometry primitives (e.g., triangles) are sent down the pipeline one at a time. In

this setup, every vertex is transformed every time it is used. Since most vertices

are used by more than one triangle, each vertex might be transformed more than

once, which is in principle redundant work.

8

One potential solution is to transform all vertices before rasterising the triangles,

which guarantees that no vertex is transformed more than once. However, this is

not done in practice, for a number of reasons. The intermediate result from the

transformations need to be stored, potentially requiring large buffers.

The vertex and index buffers are decoupled when using indexed triangle lists or

strips, and the same vertex buffers can be used by many different index buffers

which each might use a subset of the vertices. Therefore, all vertices may not

be used. In some level-of-detail setups, there can be several versions of the same

mesh with different levels of geometry detail constructed by larger or smaller

subsets of the vertices.

3.1.2 Previous work

In 1996, Bar-Yehuda and Gotsman showed that every triangle mesh with n ver-

tices can be reordered so that rendering needs only an intermediate buffer of size

O(
√

n) for the transformed vertex data, without transforming any vertex more

than once [BYG96]. Therefore, it is possible to avoid all vertex transforming

overhead with a much smaller buffer than one for transforming all vertices before

rasterisation.

Bar-Yehuda and Gotsman also presented algorithms for creating such triangle

orderings, in a format where commands for managing the intermediate buffer

for transformed vertex data are explicitly intermixed with the instructions for

constructing triangles from vertices.

In 1999, Hoppe presented the idea that the intermediate buffer could be imple-

mented as a transparent FIFO (first in, first out) cache [Hop99]. Whenever the

renderer needs a vertex, it checks whether it already is transformed and resides

in the cache. If it is there, the data is reused, otherwise the vertex is trans-

formed and the result is added to the cache, overwriting the oldest entry. In that

way, the same triangle data works on any implementation, regardless of the size

or even presence of the intermediate buffer. This also made the concept easily

implementable without changing the existing graphics APIs.

3.1.3 Measuring vertex caching

When the renderer has a transparent vertex cache, any triangle order works, but

with varying performance. The vertex transforming overhead can be measured

9

by calculating the average cache miss ratio (ACMR), that is, the number of cache

misses divided by the number of triangles rendered. For each cache miss, a vertex

is transformed and added to the cache.

In the worst case, no vertices are ever found in the cache and all three vertices

in all triangles need to be transformed, giving an ACMR of 3. The best case is

where each vertex is transformed at most once. Since the number of triangles is

less than twice the number of vertices, the ACMR cannot be less than 0.5.

3.1.4 Triangle reordering algorithms

A number of algorithms have been proposed for generating drawing orders in

order to utilise vertex caches as well as possible. Much research has been done on

generating efficient triangle strips, among others by van Kaick et al. [vKdSP04].

Other algorithms generate orders not constrained to the strip format, some opti-

mising for specific cache sizes, e.g. K-Cache-Reorder by Lin and Yu [LY06], and

others aiming at giving good cache utilisation regardless of the cache size, e.g. an

algorithm by Bogomjakov and Gotsman [BG02].

Many algorithms have a high run time complexity, which is not a big problem

if they run only when the content is generated, but makes them unsuitable for

usage in the target environment.

In 2006, Forsyth introduced an fast algorithm with a linear run time for gener-

ating universally efficient rendering orders [For06]. Sander, Nehab and Barczak

presented another fast, linear time algorithm in 2007 named tipsify, optimising

for specific cache sizes [SNB07]. These two fast algorithms might not achieve as

good ACMR as the best algorithms, but it is feasible to implement them in the

target environments, too, not only in the content generation stage. These two

algorithms are the ones analysed, evaluated and improved upon in the following

chapters.

The importance of and potential gains by reordering the triangles can be illus-

trated by the results in, for example, table 11.1, showing an over 60% increase

in frame rate on the software implementations on mobile phones and much over

100% increase on laptop chipsets.

10

3.2 Vertex reordering

When rasterising triangles, transformed data for the vertices is needed. If the

transformed vertex data is cached, it is reused, otherwise the original data must

be fetched and transformed. For optimal performance, data should be read from

the original buffers as sequentially as possible. The optimal read pattern of

course depends on the actual memory implementation and its cache structure,

but usually larger consecutive blocks are fetched into the cache at once.

The read pattern can be changed by reordering the actual vertex data in the

vertex buffers (giving each vertex a new index number) and updating the index

buffers accordingly. An ordering giving a sequential read pattern can be generated

by creating a mapping from old vertex indices to new ones. The index buffers,

containing vertex indices in the orders they will be used, are traversed. If no

mapping exists for the old vertex index, it is mapped to the next unused new

vertex index. The vertex data is reordered using this mapping, and the indices

in the index buffers are updated.

Note that this kind of reordering does not change the topology or drawing order

of the mesh in any way. It only changes the storage layout of the vertices and

gives them new names, i.e., indices.

With this kind of ordering, the vertex data to use is either located directly after

the previous read, or is a vertex which has already been used. If it is a reused

vertex, chances are that it is still in the vertex transform cache, especially if the

triangle ordering is optimised. Only the vertices which are reused but are not

found in the vertex transform cache must be refetched from the original buffers

in a non-sequential order.

3.3 Overdraw reduction

When drawing any nontrivial scene, many pixels will be rasterised as part of

several different triangles. If the so called painter’s algorithm it used, the whole

scene is drawn from the back to the front. In this scenario, the pixels covered by

more than one triangle are drawn and updated many times. If depth buffering is

used instead, the triangles can be drawn in any order. If the depth test indicates

that the pixel shouldn’t be updated, the colour of the pixel need not be computed

at all.

11

If the computing of the colour is a heavy operation (e.g., using expensive texture

filtering or a heavy fragment shader), much unnecessary work in the rendering

process can be avoided by making sure every pixel gets redrawn as few times as

possible, that is, drawing the visible triangles first and the ones which are more

occluded later.

3.4 Triangle data formats

The triangle strip format seems like an efficient format at a first glance. If the

whole mesh would consist of one single strip, it would have an ACMR of at most

1.0, disregarding the negligible effect of the initial two transformed vertices which

do not generate any triangles, since every new transformed vertex generates one

triangle. Additionally, the single new vertex for each triangle may already be

cached, lowering the ACMR further.

In practice, though, one single triangle strip is usually not enough to traverse

the whole mesh, but many shorter triangle strips are needed. To draw a mesh

consisting of many strips, each strip could either be drawn individually, or the

strips could be spliced into one long strip. The overhead of starting drawing is

usually high, making splicing the strips the better alternative.

When triangle strips are spliced, extra indices must be inserted in-between the

two strips, to make sure no extra triangles are generated from the index triplets in

the joins between strips. If the first strip ends in (. . . , 7, 8, 9), and the following

strip starts with (20, 21, 22, . . .), the splice area would be (. . . , 7, 8, 9, 9, 20,

20, 21, 22, . . .). The original triplet (7, 8, 9) still generates a triangle, but the

triplets (8, 9, 9), (9, 9, 20), (9, 20, 20) and (20, 20, 21) are degenerate since one

index appears more than once and thus are discarded and generate no triangles.

That is, the last index from the first strip and the first index from the following

strip are duplicated.

When joining triangle strips, the winding order must also be considered. There-

fore, if the prepended strip is of odd length, the winding order of the following

strip will be reversed. To avoid this a third extra index can be added in the splice,

making the prepended strip to be of even length.

These factors affect the efficiency of the triangle strips. One way of measuring

the efficiency is to divide the total number of indices in the joined strip with the

number of real, non-degenerate triangles in the strip, giving the IPT (indices per

triangle) metric.

12

The IPT metric is similar, but not identical to the ACMR metric. Efficient tri-

angle strips have IPT values slightly over 1 (values below 1 are not possible). A

single triangle strip with no degenerate triangles will have an IPT converging to

1 when the length of the strip grows. The other extreme case is when joining tri-

angle strips where each strip consists of one single triangle. Since a single triangle

is a strip of odd length, three padding indices are needed between each strip. The

joined strip therefore has 6 indices per triangle (except for one triangle).

For triangle lists the IPT value is fixed at 3, since there are no degenerate triangles

and every triangle is explicitly defined with the indices of all three vertices.

When reordering triangles generally, the new order is output as a triangle list,

since that is the only format where any arbitrary order can be specified easily.

Therefore, a conversion from a well-conditioned triangle strip with an IPT value

close to 1 will yield a triangle list with a much higher IPT value. The memory

needed and memory bandwidth used for the index buffer is directly proportional

to the IPT value. Even though the reordering yields a drawing order with a lower

ACMR, the larger IPT might outweigh the ACMR improvement in some cases.

On the other hand, a bad triangle strip representation may have an IPT value

over 3. In that case, simply converting the triangle strip to a triangle list saves

memory usage and bandwidth, even without doing any reordering at all. Triangle

strips can trivially be converted to triangle lists, while the reverse conversion is

more complex if efficient strips are desired.

13

Chapter 4

Problem statement and

evaluation criteria

4.1 Problem statement

In mobile, other embedded or very resource limited environments, the rendering

must be highly optimised. Large compromises regarding the visual quality usually

have to be made in order to get acceptable performance. In practice, the drawing

orders of most existing 3D models are more or less suboptimal, and by drawing

them in a more efficient order, performance can be improved without sacrificing

the visual quality at all.

In this thesis we focus on the following four tasks:

1. We evaluate two existing fast vertex cache optimisation algorithms, tipsify

and Forsyth’s algorithm, for usability in resource limited environments.

2. If possible, we improve their run time performance and memory usage.

3. We evaluate whether this could be enabled universally in the underlying

frameworks (e.g., an M3G library), to benefit all users without modifying

the existing applications and content.

4. Other closely related optimisations, vertex reordering and overdraw reduc-

tion are also evaluated.

14

4.2 Evaluation criteria

The optimisations must be so fast that they can be implemented in a mobile

environment without significantly slowing down the loading process, and must

not require much more memory than the actual content itself.

The optimisations must improve the rendering performance on average and must

not degrade performance remarkably in any single case. They must be integrat-

able into the existing frameworks, working automatically and transparently.

15

Chapter 5

Triangle reordering algorithms

In the following sections, two algorithms for reordering triangles for improved

vertex cache utilisation, called tipsify and Forsyth’s algorithm, and one for re-

ordering for reducing overdraw, called view independent overdraw reduction, are

presented.

5.1 The tipsify algorithm

The tipsify algorithm was presented by Sander, Nehab and Barczak [SNB07]. It

is an algorithm that optimises the triangle drawing order in linear time to achieve

good utilisation of a FIFO vertex transform cache of a given size k, by simulating

such a cache.

The general structure of the algorithm is as follows:

1. Choose any vertex as the initial so called fanning vertex.

2. Emit all triangles which use the current fanning vertex and haven’t been

emitted yet, by appending them to the output triangle list. All the vertices

used are candidates to be the next fanning vertex and are added to a so

called dead-end stack.

3. Choose the next fanning vertex among the candidates still having live tri-

angles (triangles not yet emitted). Repeat from step 2.

4. If none of the candidates have live triangles, the algorithm has reached a

dead-end. In that case, backtrack through all used vertices (by removing

vertices from the dead-end stack) until one with live triangles is found, and

repeat from step 2.

16

Live triangle

Emitted triangle

Candidate vertex

Fanning vertex
1 2

3 4

Figure 5.1: The main work flow of the tipsify algorithm. In state 1, a vertex is

chosen to be fanning vertex. In state 2, all triangles using the fanning vertex are

emitted, their vertices are candidates to be the next fanning vertex. In state 3,

one of the candidates is chosen to be fanning vertex, and its live triangles are

emitted in state 4.

5. If no new fanning vertex is found in steps 3 and 4, scan all vertices linearly

until one with live triangles is found, and repeat from step 2. If none is

found, terminate.

The core process in steps 1-3 above is illustrated in figure 5.1.

In step 3 above, when choosing among the candidates, the valid candidates are

prioritised. The longer a vertex has been in the cache, and thus the sooner it

will be thrown out from the cache, the higher priority it has. For each candidate

evaluated, the number of new vertices to transform is estimated as twice the

number of triangles to emit. If the cache simulation concludes that the candidate

vertex would be pushed out from the cache by the new transformed vertices, the

candidate is given the lowest priority.

The pseudocode for this algorithm, as presented by Sander et al., is included in

listing 5.1. The algorithm takes a triangle list I and a cache size k as parameters

and returns a reordered triangle list O.

17

Listing 5.1: Original tipsify pseudocode [SNB07]. Note that the original version

had an error on line 28.
1 T i p s i f y (I , k) : O
2 A = Build−Adjacency (I) Vertex−t r i a n g l e adjacency
3 L = Get−Triangle−Counts (A) Per−v e r t e x l i v e t r i a n g l e counts
4 C = Zero (Vertex−Count (I)) Per−v e r t e x caching time stamps
5 D = Empty−Stack () Dead−end v e r t e x s t a c k
6 E = False (Triangle−Count (I)) Per t r i a n g l e emi t ted f l a g
7 O = Empty−Index−Buf f e r () Empty output b u f f e r
8 f = 0 Arb i t rary s t a r t i n g v e r t e x
9 s = k+1, i = 1 Time stamp and cursor

10 whi l e f >= 0 For a l l v a l i d fanning v e r t i c e s
11 N = Empty−Set () 1−r ing o f next cand ida te s
12 fo r each Tr iang l e t in Neighbors (A, f)
13 i f ! Emitted (E, t)
14 f o r each Vertex v in t
15 Append(O, v) Output v e r t e x
16 Push (D, v) Add to dead−end s t a c k
17 I n s e r t (N, v) Reg i s t e r as candida te
18 L [v] = L [v]−1 Decrease l i v e t r i a n g l e count
19 i f s−C[v] > k I f not in cache
20 C[v] = s Set time stamp
21 s = s+1 Increment time stamp
22 E[t] = true Flag t r i a n g l e as emi t ted
23 f = Get−Next−Vertex (I , i , k ,N,C, s , L ,D)
24 S e l e c t next fanning v e r t e x
25 return O
26
27 Get−Next−Vertex (I , i , k ,N,C, s , L ,D)
28 n = −1, m = −1 Best cand ida te and p r i o r i t y
29 fo r each Vertex V in N
30 i f L [v] > 0 Must have l i v e t r i a n g l e s
31 p = 0 I n i t i a l p r i o r i t y
32 i f s−C[v]+2∗L [v] <= k In cache even a f t e r fanning ?
33 p = s−C[v] P r i o r i t y i s p o s i t i o n in cache
34 i f p > m Keep b e s t cand ida te
35 m = p
36 n = v
37 i f n == −1 Reached a dead−end?
38 n = Skip−Dead−End(L ,D, I , i) Get non− l o c a l v e r t e x
39 return n
40
41 Skip−Dead−End(L ,D, I , i)
42 whi l e ! Empty(D) Next in dead−end s t a c k

18

43 d = Pop(D)
44 i f L [d] > 0 Check f o r l i v e t r i a n g l e s
45 return d
46 whi l e i < Vertex−Count (I) Next in input order
47 i = i + 1 Cursor sweeps l i s t on ly once
48 i f L [i] > 0 Check f o r l i v e t r i a n g l e s
49 return i
50 re turn −1 We are done !

This design of the algorithm makes it very fast, by emitting many triangles (all

live triangles for the current vertex) between making choices, and by roughly

estimating how good a choice each candidate vertex is instead of trying to choose

among the candidates by investigating each choice more in detail. The fact that

the algorithm is fast and runs in linear time, combined with the ability to optimise

for a given cache size, makes this algorithm ideal for implementation at load time.

In this way, the models could be optimised specifically for each usage context,

without knowledge on these contexts beforehand.

5.2 Forsyth’s reordering algorithm

In September 2006, Forsyth presented a fast, linear-speed algorithm for reordering

triangles [For06]. This algorithm does not optimise for any specific cache size,

but tries to generate an ordering which works well with most cache sizes.

Forsyth’s algorithm simulates a cache with a least recently used (LRU) replace-

ment policy, even though the real target hardware might use a FIFO cache. The

simulated LRU cache is used to keep track of how recently used the vertices are.

The size of this simulated cache need not match the size of the target hardware

cache, since it is only used for estimating how good a choice different vertices are.

The larger the simulated cache, the more vertices are kept track of, potentially

leading to better decisions.

The algorithm gives scores for vertices as a function of how recently the vertex was

used and how many triangles yet are to use this vertex. The score for triangles is

calculated as the sum of the score of its vertices. The triangle with the highest

score of the triangles which still have not been added is added to the output list,

its vertices are moved to the front of the simulated LRU cache, the scores are

recalculated and the next triangle is chosen.

This algorithm is described in pseudocode in listing 5.2, where the algorithm

takes a triangle list I as a parameter and returns a reordered triangle list O.

19

Listing 5.2: Pseudocode for Forsyth’s algorithm
1 ReorderForsyth (I) : O
2 A = Build−Adjacency (I) Vertex−t r i a n g l e adjacency
3 L = Get−Triangle−Counts (A) Per−v e r t e x a c t i v e t r i a n g l e count
4 E = False (Triangle−Count (I)) Per−t r i a n g l e added f l a g
5 P = MinusOne (Vertex−Count (I)) Per−v e r t e x cache p o s i t i o n
6 O = Empty−Index−Buf f e r () Empty output b u f f e r
7 S = Zero (Vertex−Count (I)) Per−v e r t e x score
8 T = Zero (Triangle−Count (I)) Per−t r i a n g l e score
9 C = MinusOne (CACHE_SIZE + 3) Simulated cache

10 i = 0 Linear scanning cursor
11
12 f o r each Vertex v in I
13 S [v]= FindVertexScore (v , L ,P) I n i t i a l i s e the v e r t e x score
14 f o r each Tr iang l e t in Neighbours (A, v)
15 T[t] = T[t] + S [v] Add the score to the t r i a n g l e s
16
17 m = −1 Best score
18 n = −1 Best t r i a n g l e
19 f o r each Tr iang l e t in I Find the b e s t t r i a n g l e
20 i f T[t] > m
21 m = T[t]
22 n = t
23
24 whi l e n >= 0 As long as we have a t r i a n g l e
25 E[n] = true Flag t r i a n g l e as added
26 f o r each Vertex v in n
27 Append(O, v) Output v e r t e x
28 MoveToFront (C,P, v) Move to the f r o n t o f the cache
29 RemoveTriangle (A, v , n) Remove t h i s t r i a n g l e from v
30 L [v] = L [v] − 1 Decrease the a c t i v e t r i a n g l e count
31
32 f o r each index j in C Update the score s in the cache
33 v = C[j] The v e r t e x in t h i s cache s l o t
34 i f j >= CACHE_SIZE The v e r t e x has been pushed out
35 P[v] = −1 Mark as not cached
36 C[j] = −1 Remove from the cache
37 s = FindVertexScore (v , L ,P) New score
38 f o r each Tr iang l e t in Neighbours (A, v)
39 T[t] = T[t] + s − S [v] Update the score o f the t r i a n g l e s
40 S [v] = s Update the v e r t e x score
41
42 m = −1 Best score
43 n = −1 Best t r i a n g l e
44 f o r each Vertex v in C Triang l e s r e f e r enced by the cache

20

45 f o r each Tr iang l e t in Neighbours (A, v)
46 i f T[t] > m Find the b e s t t r i a n g l e
47 m = T[t]
48 n = t
49
50 i f n < 0 No a c t i v e t r i a n g l e in the cache
51 whi l e i < Triangle−Count (i)
52 i f E [i] This t r i a n g l e i s added
53 i = i + 1 Skip to the next one
54 e l s e
55 n = i Continue from t h i s t r i a n g l e
56 break
57
58 return O
59
60 MoveToFront (C,P, v)
61 e = P[v] Previous cache p o s i t i o n
62 i f e < 0 I f not in cache e a r l i e r , move
63 e = CACHE_SIZE + 2 a l l v e r t i c e s in the cache
64 f o r i = e to 1
65 C[i] = C[i −1] Move t h i s entry one s t ep back
66 i f C[i] >= 0
67 P[C[i]] = P[C[i]] + 1 Update the cache p o s i t i o n i n f o
68 C[0] = v Put the v e r t e x at the f r o n t
69 P[v] = 0 Update the cache p o s i t i o n i n f o

5.2.1 Score function

The core of Forsyth’s algorithm lies in the design of the score function. The

more recently used a vertex is, the higher score it should be given. The three

most recently used vertices, used by the latest triangle, should be given the same

score, since their internal order within the triangle can be more or less arbitrary.

To avoid leaving individual triangles behind, which will be costly to add later, the

scoring must encourage using vertices which will be needed by only a few more

triangles. Therefore, a low number of active triangles (triangles not yet added)

for a vertex should also increase the score.

The score function proposed by Forsyth therefore is of the following form:

f(p, a) =

{
−1 if a = 0 (no triangles need this vertex)

fp(p) + fa(a) a > 0 (otherwise)

21

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Cache position

C
ac

he
 p

os
iti

on
 s

co
re

The score function of the cache position, f
p
(p)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of active triangles

S
co

re

The score function of the number of active triangles, f
a
(a)

Figure 5.2: The score functions in Forsyth’s algorithm.

fp(p) =


0 p < 0 (not in the cache)

A p < 3 (used by the latest triangle)(
1− p−3

S−3

)B
p ≥ 3 (otherwise)

fa(a) = C · a−D

The parameter p is the cache position and a is the number of active triangles.

Forsyth did not see any improvements in using a larger simulated cache than

S = 32 and therefore chose that size. By varying the parameters A, B, C and D

and testing the result with simulations, he concluded that the optimal parameters

were 
A = 0.75

B = 1.5

C = 2.0

D = 0.5.

The two components of the score function are illustrated in figure 5.2.

Even though these score functions may seem computationally heavy, they need

not be calculated every time they are used. fp(p) is only used for values of p from

0 to one less than the cache table size. The parameter a in fa(a) can in principle

be any positive value but is in practice usually a small value, less than 7 in most

cases. By cutting off the tail of the function fa(a) for all values of a larger than

an arbitrary threshold, both of these functions can be precalculated and stored

in a table, avoiding heavy calculations at algorithm run time. To minimise the

impact of cutting the tail of fa(a), the threshold must be higher than the values

of a where the value of fa(a) actually impacts the decisions in the algorithm.

22

Recall that the purpose of fa(a) is to prioritise vertices with few active triangles

left. In the tests, the threshold was chosen to be 32.

5.3 View independent overdraw reduction

When reducing overdraw, the completely visible triangles are drawn first and the

more occluded ones later. Visibility depends on where the object is viewed from,

though. Therefore, to avoid overdraw, the triangles would have to be reordered

specifically for each frame rendered. However, Sander et al. presented a technique

for sorting clusters of triangles to get overdraw reduction independent of viewing

direction [SNB07].

In this technique, each cluster is assigned an occlusion potential, where a higher

potential means a higher probability of occluding other triangles, independent of

views. The occlusion potential of a cluster P in the mesh M is approximated by

O ′(P, M) = (C(P)− C(M)) ·N(P),

where C is the centroid function and N is the average normal of the cluster P .

This approximation simply says that clusters far from the mesh centre, facing

away from the mesh centre are the ones most probably occluding other parts of

the mesh, regardless of from which direction it is viewed.

This is a reasonable approximation, assuming that the mesh is to be viewed from

the outside and not from the inside, and assuming that the mesh consists of one

single part where the centre is inside of the mesh.

For the average normal of the clusters to be as useful as possible, the average

normal should be representative for the whole cluster, that is, the normals within

the cluster should not vary much.

In order not to compromise the vertex cache efficiency, the mesh can be divided

into clusters during vertex cache optimisation. During the triangle reordering,

an estimate of the current ACMR is calculated. When the estimate drops below

a given threshold value, named λ in Sander’s original description, the triangles

emitted since the last cluster are considered to be a new cluster. Then the ACMR

estimation is reset and the algorithm continues emitting triangles. In this way,

every cluster except the last one has an average estimated ACMR equal to λ,

regardless of the order the clusters are drawn. Therefore, the clusters can be

reordered freely without affecting the total ACMR.

23

The same method can equally well be integrated into Forsyth’s reordering algo-

rithm, by using another estimate of the ACMR.

24

Chapter 6

Memory usage

The memory usage for the algorithms optimising the vertex cache usage is anal-

ysed below, since memory is usually a very limited resource in embedded systems.

Conversely, reducing the memory usage makes the algorithms usable on larger

models, both on embedded systems and on desktop computers.

The memory usage of the view independent overdraw reduction algorithm is not

analysed in detail, since it is trivial. It uses a certain amount of memory for each

cluster, but the memory usage can easily be limited by limiting the number of

clusters.

The analysed algorithms require memory for the temporary buffers used while

reordering triangles. Below, t is the number of triangles and v is the number of

vertices. In the description of tipsify, k is the tipsify cache size parameter.

The memory usage of the initial mesh can be used to estimate proportions to the

sizes discussed later. A mesh consisting of vertex positions and texture coordi-

nates requires 5 coordinates per vertex, assuming that 3 coordinates are used for

the positions. If each coordinate is given with 16 bits precision, the vertex data

is is 10v bytes. If the triangles are defined as triangle strips with an IPT ratio

of 1.6, the triangle data occupies 3.2t bytes if 16 bit indices are used. Applying

the simplification t ≈ 2v, the vertex data becomes 5t bytes, making the total

of the mesh 8.2t bytes. As an example of a mesh requiring more memory, add

normal vectors to the vertex data and use triangle lists instead of strips. In this

case, each vertex needs 8 coordinates, making the vertex data part 8t bytes. The

triangle lists need 6t bytes, giving a total of 14t bytes.

25

6.1 The tipsify algorithm

The memory usage of the tipsify algorithm, as summarised in table 6.1, can be

adjusted by using data types of different sizes. For analysing the size of the

data structures, four primitive data types need to be defined. AdjacencyType

is a nonnegative integer capable of storing the number of triangles one vertex

belongs to. VertexIndexType is a nonnegative integer, an index to a vertex.

This is the data type used for the index buffers given to and returned from

the algorithm. TriangleIndexType is a nonnegative integer for storing triangle

numbers. ArrayIndexType is a nonnegative integer for storing indices into the

index buffers, that is, it must be able to store values up to 3t. In the usage

described below, ArrayIndexType must actually support values up to 3t + k + 1.

The adjacency data structure named A in the pseudocode (listing 5.1) is imple-

mented as an array of triangle indices which maps vertices to the triangles using

them, and another array with offsets into the first one. In the reference C++

implementation in appendix A, these are named adjacency and offsets, respec-

tively. Every vertex can be used by a variable number of triangles, therefore the

number of triangle indices for each vertex is not fixed. But since each triangle

uses three vertices, the total amount of triangle references in the array will be 3t.

The offsets array contains offsets into the adjacency array, pointing to the first

triangle index for each vertex. In order to construct these arrays, another array

(numOccurrances) is used, containing the number of triangles for each vertex.

After building the adjacency data structures, this array is reused as liveTriangles

(L in the pseudocode).

The array of time stamps (C, cacheTime) contains one time stamp for each vertex.

The array is initialised to zero, and the time starts at k + 1 and is increased by

one unit for each cache miss. In the worst case, every vertex access is a cache

miss, which gives the maximum time stamps value k + 1 + 3t. ArrayIndexType

is the type used for this array.

The dead-end stack (D, deadEndStack) contains vertex indices. In the worst case,

the algorithm never runs into any dead-ends, and no indices are popped off the

stack. In that case, the dead-end stack grows to a size of 3t.

The array of flags keeping track of which triangles are emitted (E, emitted) can

be efficiently stored as an array of dt/8e bytes, with one bit for each triangle.

The output index buffer (O, outputIndices) will contain 3t vertex indices.

Additionally, the set of candidates to the next vertex choice (N, nextCandidates)

26

Name Pseudocode Type Length

name

adjacency A TriangleIndexType 3t

offsets A ArrayIndexType v

numOccurrances A
AdjacencyType v

liveTriangles L

cacheTime C ArrayIndexType v

deadEndStack D VertexIndexType 3t

emitted E byte dt/8e
outputIndices O VertexIndexType 3t

nextCandidates N VertexIndexType 3·maxAdjacency

Table 6.1: Data structures, their type and memory usage in the tipsify algorithm

will at most contain three times the number of triangles using the current vertex.

The highest number of triangles referring one single vertex (maxAdjacency) can

easily be obtained while building the adjacency data structures. There is also an

upper bound for this, the maximum value of AdjacencyType.

In order to estimate the total amount of memory needed, the sizes of the data

types must be defined. As an example, consider that vertex indices (VertexIn-

dexType) are constrained to 16 bit by the environment, as in OpenGL ES 1.x.

The number of triangles is not externally constrained, and can exceed 16 bits,

therefore 32 bits are needed for this.

In most normal meshes one vertex is only used by a handful of triangles, and very

seldom by more than 255 triangles, and thus AdjacencyType can quite safely be

limited to 8 bits. If a mesh contains a vertex used by more than 255 triangles,

that mesh can be reordered by a less optimised version of the algorithm.

The memory used by nextCandidates is almost constant and can be disregarded,

since maxAdjacency does not grow significantly with the mesh size, and it addi-

tionally is upper bound by the maximum value of AdjacencyType. With these

definitions and simplifications, the memory needed is

4 · 3 · t + 4 · v + 1 · v + 4 · v + 2 · 3 · t + 1 · t/8 + 2 · 3 · t =

24.125t + 9v

bytes, which can be further simplified by introducing the approximation t ≈ 2v,

yielding

24.125t + 4.5t = 28.625t

27

bytes.

To lower the peak of memory usage, one simple modification can be introduced.

Instead of directly outputting each vertex into the output buffer, the output order

can initially be stored only as triangle indices. When the output order is complete,

the rest of the temporary buffers can be freed and the real output buffer can be

allocated. The original outputIndices array is of type VertexIndexType and 3t

elements long, requiring 6t bytes in the example case, but can in this case be

replaced with an array of type TriangleIndexType which is only t elements long,

requiring 4t bytes. Thus, the amount of memory saved is 2t bytes.

To further lower the memory usage, the number of triangles could be limited to

a 16 bit number, making TriangleIndexType a 16 bit type. That would save 6t

bytes and another 2t bytes if combined with the optimisation above. If these

optimisations are combined, the total memory usage is 18.625t bytes.

6.2 Forsyth’s reordering algorithm

The memory usage of Forsyth’s algorithm is shown in table 6.2. As in the analysis

above, some primitive data types need to be defined. AdjacencyType, VertexIn-

dexType and TriangleIndexType are defined in the same way as for tipsify. In

addition to these, a signed integer type CachePosType for storing cache positions

is needed. It must be capable of storing values up to the cache size S plus two

(since the cache array contains three extra slots) and the value −1 representing

a vertex not in the cache. ScoreType is a data type for the vertex and triangle

scores. This type can be defined freely as either integer or floating point, since

the score values can be scaled to use the whole data type range if it is an integer

type.

The adjacency data structure, active triangle count, triangle added flags and

output index buffer are implemented in the same way as in tipsify, but they

are named triangleIndices, offsets, numActiveTris, triangleAdded and outIndices.

Additionally, the current score (lastScore, S) and cache position (cacheTag, P) is

stored for each vertex, and the current score (triangleScore, T) for each triangle.

The vertex index (cache, C) is stored for each simulated cache slot (and for three

additional slots, needed for keeping track of old vertices pushed out of the cache)

but since the simulated cache is fixed and does not grow with the mesh, this is

omitted from the following calculations.

28

Name Pseudocode Type Length

name

triangleIndices A TriangleIndexType 3t

offsets A ArrayIndexType v

numActiveTris A/L AdjacencyType v

triangleAdded E byte dt/8e
outIndices O VertexIndexType 3t

lastScore S ScoreType v

cacheTag P CachePosType v

triangleScore T ScoreType t

Table 6.2: Data structures, their type and memory usage in Forsyth’s algorithm

To get comparable memory usage values, assume the same limitations and defi-

nitions as for tipsify, that is, VertexIndexType is 16 bits, TriangleIndexType and

ArrayIndexType are 32 bits and AdjacencyType 8 bits. As long as the cache is

less than or equal to 125 elements large, CachePosType can be a signed 8 bit

type.

If ScoreType is chosen to be an integer, a suitable scaling must be selected,

mapping the whole score function value range into the range of the chosen integer

type. The score function returns values in the range [-1, 3], but returns negative

values only if the vertex is not needed by any active triangles. The actual score

value for that case does not affect the reordering result, since the score will be

added only to triangles which are not active and the scores of those triangles

are not used anywhere. Therefore, the score function can be modified to return

0 in that case, making the score function nonnegative for all input values and

shrinking the value range to [0, 3]. By making the value range smaller, an integer

representation of the score function can use larger scaling factors, giving better

precision.

The modified score function gives values in the range [0, 3], therefore the triangle

score lies in the range [0, 9]. The maximum triangle score actually is slightly

lower, since a triangle with three unique vertices cannot get the maximum vertex

cache score for all three vertices. If an unsigned 16 bit integer type is chosen, the

score values can be scaled by a factor up to b65535/9c = 7281 before conversion to

integers. For 8 bit integers, the maximum scaling factor would be b255/9c = 28.

The following calculations assume that ScoreType is a 16 bit integer.

29

With these definitions, the memory needed for Forsyth’s algorithm is

4 · 3 · t + 4 · v + 1 · v + 1 · t/8 + 2 · 3 · t + 2 · v + 1 · v + 2 · t =

20.125t + 8v

bytes, which by the approximation t ≈ 2v is simplified to 24.125t bytes.

By changing ScoreType to a 8 bit integer, the memory usage would be reduced

by 1.5t bytes. The two other general optimisations proposed for tipsify, changing

TriangleIndexType to a 16 bit type and only storing triangle indices (instead of

the final vertex indices) during reordering can be applied here, too.

Changing TriangleIndexType to a 16 bit type saves 6t bytes, storing triangle

indices instead of full triangles saves 2t bytes and yet another 2t bytes combined

with a 16 bit TriangleIndexType. If these optimisations are combined, the total

memory usage is 12.625t bytes.

30

Chapter 7

Test setup

7.1 Test environments

For testing, verification and evaluation, the algorithms were implemented both on

desktop/laptop platforms using OpenGL and on mobile platforms using OpenGL

ES. In order to verify the feasibility and to evaluate the benefit of integration

into existing APIs, the algorithms were integrated into Nokia’s M3G library.

Two different laptops were used as OpenGL test environments. The first one

was an Apple Powerbook with a NVIDIA GeForce FX Go5200 64 MB chipset,

running Mac OS X 10.5.1. The second one was a Lenovo Thinkpad T60p with an

ATI Mobility FireGL V5200 512 MB chipset, running Windows XP SP2 and the

OpenGL driver version 6.14.10.5527. For testing in mobile environments, three

smartphones were used. Nokia E65 and E51 phones, having Nokia OpenGL ES

1.0 and 1.1 respectively, were used for testing software renderers, and a Nokia

E90 with a PowerVR MBX chip for testing hardware renderers. Even though

there is only a small difference in version number between Nokia OpenGL ES 1.0

and 1.1, they differ distinctly in behaviour in some tests.

Note that the laptop chipsets were not chosen to be compared against each other.

The NVIDIA chip is much older and not aimed at the same performance range

as the ATI chip. They are only used for analysing the behaviour of and relative

improvement offered by different algorithms.

31

Figure 7.1: The bunny and dragon models from Stanford.

Figure 7.2: M3G test models. From the left, hi_dog, grid, mapanimlow and

texturedcar.

7.2 Test models

For measuring ACMR and testing the maximum possible gain from reordered

triangles, large meshes from the Stanford 3D Scanning Repository were used. The

bunny model (with over 69 000 triangles) was used in both environments, and the

dragon model (with over 1 000 000 triangles) was used in the laptop environments.

These models are shown in figure 7.1. Note that these models are automatically

constructed from scanning data, using two different algorithms. Since they have

been constructed automatically, their topology is probably slightly more regular

than hand-modelled meshes.

The M3G integration was tested with a few different models, shown in figure 7.2.

The first M3G model, hi_dog, is a complex animation with dynamic lighting,

including a large skinned mesh, created by HI Corporation. The grid model is

a collection of 12 application icons from the Nokia S60 application menu, with

simple animation by rotating whole meshes. The mapanimlow mesh is a car race

animation with low resolution textures and without lighting, from the JBench-

32

IPT Submeshes Vertices Triangles

bunny1-opt 1.85 1 35947 69451

bunny1 6.00 1 35947 69451

bunny2-opt 2.01 1 8171 16301

bunny2 6.00 1 8171 16301

bunny3-opt 2.11 1 1889 3851

bunny3 6.00 1 1889 3851

bunny4-opt 2.17 1 453 948

bunny4 6.00 1 453 948

grid 2.13 101 4039 3419

hi_dog 2.78 30 14306 20240

mapanimlow 2.13 132 3506 4322

texturedcar 2.02 2 6692 10216

Table 7.1: Test model information

mark Pro application, made by Kishonti Informatics LP. The texturedcar model

is a static, non-animated version of the race car in higher resolution.

In addition to these models with original M3G content, the Stanford bunny was

converted into M3G format. The bunny model is available in four resolutions,

the original one (bunny1) and three decimated versions with less vertices and

triangles (bunny2, bunny3 and bunny4). The M3G file format only supports

triangles in strip format. Each version of the mesh was exported to M3G both

as a mesh with the triangles in exactly the same order as in the original version,

with separate strips for every individual triangle, and as a mesh with the triangles

reordered into strips using a trivial algorithm (file names with an -opt suffix).

Statistics on the M3G models are shown in table 7.1.

33

Chapter 8

The behaviour of the tipsify

algorithm

8.1 Simulation results

To study the behaviour and properties of the tipsify algorithm, the output from

the algorithm was simulated with a theoretical pure FIFO cache, to calculate the

ACMR for the orderings when using such a cache. The ACMR as a function

of the cache size given as parameter to tipsify and the simulated cache size is

illustrated in figure 8.1.

The surface plot shows exactly what can be expected. The diagonal, where tipsify

was given the same size as used for the ACMR simulation, divides the graph into

two distinct areas. The lower left area is the area where tipsify was given an

underestimate of the target cache, the upper right area is where tipsify was given

an overestimate. The behaviour can be inspected more in detail in the other two

graphs, showing cross-cuts of the surface from different points.

The first of the two cross-cut graphs shows how a specific tipsify output works on

different caches. When the real cache is smaller than the tipsify target size, the

ACMR is very high, but falls steeply when the cache size approaches the intended

size. With a cache larger than the tipsify target size, the ACMR hardly improves

any further at all.

The second cross-cut graph shows the case when the simulated cache is of a fixed

size and tipsify is given varying sizes as a parameter. When tipsify is given a

target smaller than the real size, the results are slightly suboptimal, but mostly

acceptable. However, as soon as tipsify is given a larger target than the real cache

34

0 10 20 30 40 50 60
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Simulated cache size

A
C

M
R

Tipsify with the target cache sizes 10, 13, 16, 20, 30, 40, 50 (Dragon)

0 10 20 30 40 50 60 70
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Tipsify target size

A
C

M
R

The effect of the target size for tipsify on simulated caches (Dragon)

Simulated cache size 16
Simulated cache size 30
Simulated cache size 50

Figure 8.1: General properties of tipsify. The surface plot shows how the ACMR

varies with the size given to tipsify and the actual cache size. The other two plots

show how a given tipsified ordering performs on different cache sizes, and how

different tipsify target sizes perform on fixed cache sizes. The simulations were

made on the dragon model, the main features are similar for other models.

35

size the ACMR becomes much worse. Therefore, an overestimation of the cache

size should be avoided.

8.2 Choosing the optimal tipsify parameter

One of the main features of tipsify, the ability to optimise for a specific cache

size, is at the same time its main drawback. In practice, the cache size of the

target device is not necessarily known. (Since the cache is completely transparent,

current graphic APIs such as OpenGL and OpenGL ES do not even have any

notion of a vertex cache, and thus querying for its size is impossible.) Additionally,

knowledge of the actual cache size may not be enough, since the actual cache is not

necessarily a pure FIFO cache. If this is the case, the optimal tipsify parameter is

not likely the real cache size, since tipsify assumes that the cache is a pure FIFO

cache and simulates a such.

Therefore, either more specific knowledge about the underlying layer (hardware

chip or software API implementation) or a run time test to determine the optimal

parameter is needed.

This can be tested simply by benchmarking the order output by tipsify for a

range of cache sizes, and finding the shortest rendering time. This was tested on

a few phones with different renderers (two software renderers and one hardware

accelerated renderer) and on two laptops. The rendering times from these tests

are illustrated in figure 8.2.

If the actual cache is a pure FIFO cache, the rendering time curve should have

the same shape as the simulated ACMR curves, assuming that the rendering time

consists of one part of a fixed length and another part which varies linearly with

the ACMR.

The rendering time curves for the two software renderers (on E51 and E65) have

the same general features as the simulated curves, but on E51 there is no clear

optimum with a steep rise in ACMR afterwards, as in the simulations. On E65

the rise in ACMR is not as clear and steep as in the simulations, but still more

clear than on E51. This indicates that the cache is not a pure FIFO in either of

the cases.

The rendering times on E90 show an optimum around the parameter value 6.

With higher parameter values the rendering times are slightly longer and most of

the differences in that area are measurement noise. Note that the relative sizes

36

0 10 20 30 40 50 60 70 80
0.355

0.36

0.365

0.37

0.375

0.38

0.385

0.39

0.395

0.4

Tipsify target size

F
ra

m
e

re
nd

er
in

g
tim

e
[s

]

E51 (Nokia OpenGL ES 1.1)

0 10 20 30 40 50 60 70 80
0.59

0.6

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

Tipsify target size

F
ra

m
e

re
nd

er
in

g
tim

e
[s

]

E65 (Nokia OpenGL ES 1.0)

0 10 20 30 40 50 60 70 80
0.266

0.267

0.268

0.269

0.27

0.271

0.272

0.273

Tipsify target size

F
ra

m
e

re
nd

er
in

g
tim

e
[s

]

E90 (PowerVR MBX)

0 10 20 30 40 50 60 70 80
0.095

0.1

0.105

0.11

0.115

0.12

0.125

0.13

0.135

0.14

0.145

Tipsify target size

F
ra

m
e

re
nd

er
in

g
tim

e
[s

]

NVIDIA, Dragon

0 10 20 30 40 50 60 70 80
0.0095

0.01

0.0105

0.011

0.0115

0.012

0.0125

0.013

Tipsify target size

F
ra

m
e

re
nd

er
in

g
tim

e
[s

]

ATI, Dragon

Figure 8.2: Rendering times of a model reordered with different tipsify target

sizes, on different OpenGL and OpenGL ES implementations. The mobile plat-

forms were tested with the bunny model, the laptop chipsets with the dragon

model. The rendering times are measured in seconds.

37

of the variations are small and not significant in practice. The conclusion is that

the actual cache is probably very small.

The shape of the graphs for both laptop chipsets (NVIDIA and ATI) is almost

identical to the simulated curves, meaning that they probably have more or less

ideal FIFO caches of about 16 elements. Choosing the optimal parameter is very

easy in these cases.

38

Chapter 9

Algorithm improvements and

compromises

The vertex cache optimisation algorithms, tipsify and Forsyth’s algorithm, were

analysed for potential improvements in memory usage, run time performance and

ACMR results. The improvements made are explained below.

9.1 The tipsify algorithm

9.1.1 Dead-end stack

All of the data structures listed for tipsify in section 6.1, except the dead-end

stack, are fully used. For the dead-end stack, only a worst case estimate is

available, which is used as its size. In practice, only about half of it is used.

To avoid this waste of memory, a small buffer, which grows when needed, could be

allocated. However, reallocating memory buffers when the algorithm has started

may be troublesome or impossible in some cases or environments.

This raises the question of the necessity of the dead-end stack at all. The stack

provides a path for backtracking to earlier vertices when the algorithm has run

into a dead-end, allowing the algorithm to continue from a position as near the

latest vertices as possible. If a vertex with live triangles is found close to the

dead-end, that vertex (and possibly some of its neighbours) may still be in the

cache. But if the algorithm is forced to backtrack further, it does not matter at

all where the algorithm continues, because the vertices it needs are not cached

anymore. If no vertex with live triangles is found in the stack, the algorithm

continues scanning linearly through all vertices.

39

The algorithm may work almost as well without any dead-end stack. Since it

does not backtrack using the stack at all in that case, the restart positions will

proceed linearly through the vertices. If the vertices are ordered roughly according

to locality (that is, vertices with a small difference in indices are located near each

other) and the algorithm reaches dead-ends often, the restart positions are located

near regions which have been processed recently, and thus the result may not be

much worse than the original result using a dead-end stack. On the contrary, if

the vertices are ordered completely randomly, the restart positions will also be

completely random. Thus, removing the dead-end stack makes the result more

dependent on the original input order.

As a compromise, the dead-end stack can be of a fixed, small size N . The stack

would then work roughly as a ring buffer, storing only the N latest vertices.

Adding vertices to it when it is full replaces the oldest vertex in the buffer with

the new one. In this way, short steps backwards in the stack are still possible,

while longer traversals backwards in the stack are avoided, reverting to the linear

scanning instead. Short steps backwards are the ones which in practice find

vertices which still are in the cache, while the longer traversals backwards do not

give any better restart positions than the linear scanning.

Even if the dead-end stack is used, the algorithm does not terminate until the

whole mesh has been scanned linearly, otherwise it could miss isolated parts of

the mesh. Removing or shortening the dead-end stack may therefore slightly

improve the run time performance of the algorithm in addition to decreasing the

memory usage.

Simulations of these variations are illustrated in figure 9.1. The simulations con-

firm the properties that were deduced above. Removing the dead-end stack com-

pletely affects the end result negatively, the ACMR increases by almost 0.03.

Randomising the input order affects the result more when the dead-end stack is

removed than in the original setup, increasing the ACMR by another 0.02.

The compromise with a fixed-size dead-end stack of 128 elements turns out to

work very well, though. The result is only slightly worse than the original, the

ACMR increases about 0.01. The impact of randomised input order is much

smaller than when using no dead-end stack at all, increasing the ACMR by 0.006.

In the original setup, with an unlimited dead-end stack, a randomised input order

increases the ACMR by only 0.001.

Removing the full sized dead-end stack from the earlier memory usage calculations

saves 6t bytes. A fixed-size dead-end stack only adds a small constant amount to

40

10 15 20 25 30 35 40 45 50 55 60

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Simulated cache size

A
C

M
R

Impact of the dead−end stack size, tipsify target size 30 (Dragon)

Original algorithm
Original algorithm, randomized input order
No dead−end stack
No dead−end stack, randomized input order
128 elements dead−end stack
128 elements dead−end stack, randomized input order

Figure 9.1: Simulation of the impact on the ACMR of removing or shrinking the

dead-end stack, when using a tipsify target size of 30.

the usage sum. If this is applied to the original tipsify memory usage in section

6.1, the memory usage is lowered from 28.625t bytes to 22.625t bytes, a 20%

decrease. If the other optimisations mentioned are used, it lowers the memory

usage from 18.625t bytes to 12.625t bytes, which is an over 30% decrease.

Therefore, a fixed-size dead-end stack is a general memory usage improvement

which does not affect the end result noticeably in practice, and can be recom-

mended for use in all cases where the memory usage is restricted.

9.1.2 Estimating the number of uncached vertices

As seen in figure 8.1, the algorithm gives unexpected results for parameters in the

region 5-10. This kind of unexpected results also appears for the bunny model,

where parameter values 7 and 8 give drastically worse results than neighbouring

parameter values, as illustrated in figure 9.2. The differences between the models

are probably due to them being generated by two different algorithms, giving

them a slightly different topology.

An explanation can be found by analysing the algorithm design. The inherent

design in the tipsify algorithm assumes that the cache is not very small. The only

place where the cache size given as a parameter to the algorithm actually affects

the algorithm is in line 32 in the pseudocode in listing 5.1. The condition in that

line, which checks whether the evaluated vertex is in the cache after adding all

its live triangles, hardly ever is true for very small caches. If this condition never

41

0 10 20 30 40 50 60 70
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Tipsify target size

A
C

M
R

The effect of the target size for tipsify on simulated caches (Dragon)

Simulated cache size 16
Simulated cache size 30
Simulated cache size 50

0 10 20 30 40 50 60 70
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Tipsify target size

A
C

M
R

The effect of the target size for tipsify on simulated caches (Bunny)

Simulated cache size 16
Simulated cache size 30
Simulated cache size 50

Figure 9.2: Comparison of the behaviour of tipsify between the dragon and the

bunny models.

is true, the next fanning vertex is always the first valid one, whichever it happens

to be.

This condition requires a heuristic estimate of the number of uncached vertices

which need to be transformed when all live triangle are emitted. The original

estimate used is the worst case, that every emitted triangle needs two new un-

cached vertices. The difference between this estimate and the real number has a

minor impact on the end result as long as the cache size is large, but has a much

larger impact when the cache size is small.

The estimate can of course be improved by exploring the data structures further,

trying to determine the actual number of uncached vertices. That would, however,

increase the algorithm run time. Instead, a few other estimates can be considered.

Figure 9.3 shows the original worst case estimate, and three other estimates.

The original estimate, estimate 1, is that each new triangle requires two new

uncached vertices, 2Lv, where Lv is the number of live triangles for vertex v.

Another plausible case is that each triangle requires two new vertices, except the

first and last triangle which use one cached vertex each, giving estimate 2, 2Lv−2.

In most cases in practice, most of the uncached vertices are located consecutively.

In that case, each live triangle shares uncached vertices with the live triangles

on each side, giving estimate 3, Lv + 1. The first and last of the live triangles

might also share a cached vertex each with the already emitted triangles, yielding

estimate 4, Lv − 1.

These four estimates were tested in the implementation of tipsify, and the output

triangle orders were simulated with cache sizes 3, 4 and 30. The simulation results

are compared in figure 9.4.

42

1 2

3 4

Live triangle

Emitted triangle

Evaluated vertex

Cached vertex

Uncached vertex

Figure 9.3: Different possible cases when estimating the number of new uncached

vertices needed when evaluating a vertex. (1) 2Lv (2) 2Lv−2 (3) Lv +1 (4) Lv−1

For the both models, the best ACMR achieved is improved only slightly, and

only for the smaller cache sizes. The point of the optimum for each cache size is

moved. Notable is that estimate 4 is the only estimate yielding the best ACMR

when tipsify is given the actual cache size, for the small caches. That is, the

optimal tipsify parameter is 3 when simulated with a cache of size 3.

Another feature to notice is that for larger cache sizes, estimate 4 is the only

one which completely avoids the suboptimal results for parameters around 5-10

on the bunny model. On the dragon model, none of the estimates give clearly

suboptimal results for these parameters, but all three new estimates give better

results for parameters in this range.

For these larger cache sizes, however, the optimal tipsify parameter is slightly

smaller than the actual cache size (28 or 29 would be the optimal tipsify param-

eters for cache size 30 in the simulations), if estimate 4 is used.

The new estimates improve the behaviour when using tipsify parameters below

10, even though the tipsify algorithm is not intended for these cases. General

strip building algorithms probably work better than tipsify when targeting small

caches.

None of the estimates is universally the best, but estimate 4 has very small disad-

vantages. As long as the tipsify parameter actually is tested empirically instead

of directly using exactly the actual cache size, estimate 4 can be recommended to

be used instead of the original estimate, since it has a better overall behaviour.

43

0 10 20 30 40 50 60 70
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Tipsify target size

A
C

M
R

Comparison of estimates of the number of uncached vertices, cache sizes 3, 4 and 30 (Bunny)

Estimate 1 (original)
Estimate 2
Estimate 3
Estimate 4

0 10 20 30 40 50 60 70

0.8

1

1.2

1.4

1.6

1.8

2

Tipsify target size

A
C

M
R

Comparison of estimates of the number of uncached vertices, cache sizes 3, 4 and 30 (Dragon)

Estimate 1 (original)
Estimate 2
Estimate 3
Estimate 4

Figure 9.4: Comparison of the four estimates of the number of uncached vertices.

The four algorithm variants are simulated with cache sizes 3 (the topmost curves),

4 (the curve cluster in the middle) and 30 (the bottommost curves). The top

graph shows simulations on the bunny model, the bottom graph is for the dragon

model.

44

9.2 Forsyth’s reordering algorithm

9.2.1 Shrinking the cache table

The run time of large parts of Forsyth’s algorithm is proportional to the size of

the simulated cache. When adding vertices to the cache, the rest of the cache

must be pushed back, and after adding a triangle, the scores of all vertices in the

cache are updated. Therefore, the run time could be shortened by simulating a

smaller cache.

The original point in simulating an LRU cache was to keep track of how recently

used all vertices of interest are. By intentionally simulating a smaller cache, the

algorithm deviates slightly from the original idea, but may work well enough

anyway.

One potential problem lies in the cache position score function, though. The

function was designed to approach zero at the end of the cache range. This

is a reasonable design as long as the simulated cache is large enough and thus

the benefit from reusing a vertex in the end of the cache is small. But if the

simulated cache is knowingly smaller than the potential caches on the target

devices, it makes little sense to give scores close to zero for the last elements in

the cache, since they most probably still are cached on the real device, too, and

would be a good choice for reuse. Therefore, the cache score function should not

approach zero towards the end of the cache if the simulated cache is small.

When using a cache of a different size, the parameters A, B, C and D should

also be reevaluated and adjusted. But simply adjusting the parameters does not

change the fact that the cache score function approaches zero to the end of the

cache.

By decoupling the parameter S in the score function from the actual size of the

cache simulated by the algorithm, the score function values for the original cache

of size 32 can be used with smaller caches, too. The cache score function in the

range used by a cache of size 8, for S = 32 as originally and a for S = 8, is

illustrated in figure 9.5.

Another way of presenting the argument is that a vertex in LRU cache slot n

should always be given the same cache score, based on the fact that it was used

n steps ago, regardless of at what point a score function converging towards zero

is cut off.

45

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cache position

C
ac

he
 p

os
iti

on
 s

co
re

The score function of the cache position, f
p
(p), for p ∈ [0, 7]

S = 32
S = 8

Figure 9.5: The cache score function for S = 32 and S = 8, in the range used

when simulating a cache with 8 slots.

10 15 20 25 30 35 40 45 50 55 60

0.65

0.7

0.75

0.8

0.85

Simulated cache size

A
C

M
R

Forsyth reordering with a smaller cache, simulated on large caches (Bunny)

Original (cache size 32)
Original, randomized input order
Cache size 8 (S = 8)
Cache size 8 (S = 8), randomized input order
Cache size 8 (S = 32)
Cache size 8 (S = 32), randomized input order

Figure 9.6: Comparison of the original cache table size of 32 elements and a cache

table of 8 elements with two different scoring functions, for large cache sizes.

46

1 2 3 4 5 6 7 8 9 10
0.5

1

1.5

2

2.5

3

Simulated cache size

A
C

M
R

Forsyth reordering with a smaller cache, simulated on small caches (Bunny)

Original (cache size 32)
Cache size 8 (S = 8)
Cache size 8 (S = 32)

Figure 9.7: Comparison of the original cache table size of 32 elements and a cache

table of 8 elements with two different scoring functions, for small cache sizes.

These assumptions are confirmed by simulations. Figure 9.6 illustrates the differ-

ences between the original cache size 32, a cache of size 8 with unmodified cache

score function (approaching zero at the end of the cache) and a cache of size 8

with the same cache score function values as for a cache of size 32.

The simulations show that a cache of size 8 raises the ACMR by up to 0.05 (in

the cache range 10 - 60) compared to the original cache size 32, but a cache of

size 8 with the same cache score function values as the original cache only raises

the ACMR by less than 0.03 (in the same range).

For simulations using caches smaller than 10, the algorithm using a smaller cache

with a cache function score approaching zero at the end of the cache (S = 8) gave

lower ACMR, as shown in figure 9.7. This score function prefers reusing vertices

which have been used very recently, which is a better choice for small caches.

47

Chapter 10

Comparison between tipsify and

Forsyth’s algorithm

10.1 Similarities and differences

Even though tipsify and Forsyth’s algorithm use different approaches, there are

clear similarities. Both are designed to reorder triangles in a mesh in fast, linear

time, which sets some limitations on the algorithms.

From a high level, the structure in both algorithms is the same. Initially, some

data structures are built, for fast access later. One element (vertex or triangle)

is chosen, one or a few triangles are emitted, and the following element is cho-

sen among a small, almost fixed size, set of candidates using a simple heuristic

method. If no suitable candidate is available, they continue scanning the mesh

linearly for a suitable point to continue from.

Both use a simple adjacency data structure. The original index buffer given as

input to the algorithm allows triangle indices to be mapped to the vertex indices

for that triangle, and the adjacency data structure allows mapping in the other

direction, from a vertex index to the triangles using it. Additionally, both share

the trivial list of flags showing which triangles have already been added to the

output.

The differences lie in the heuristic approach used. Forsyth’s algorithm chooses

one single triangle to emit at a time and does much work to update the data

structures after adding each triangle, while tipsify emits a handful of triangles at

a time for each choice made.

48

10.2 Simulated results

To compare the algorithms, their output orders were simulated on a range of

FIFO caches. This was tested on three different models, the Stanford bunny, the

dragon model and the car mesh from JBenchmark. The simulation results are

depicted in figure 10.1.

None of the algorithms is the best choice in all situations. On the bunny model,

tipsify gives the lowest ACMR by a relatively wide margin for the larger cache

sizes, assuming that the cache size is known. On the dragon model, tipsify still

achieves the lowest ACMR, but with a much smaller margin. In the car model,

Forsyth’s algorithm gives better results for all cache sizes. But keep in mind that

tipsify gives strongly suboptimal results if the cache size is overestimated.

10.3 Algorithm run time performance

The run times for the different variations of the algorithms are listed in table 10.1.

The table additionally mentions the run time for the overdraw reduction combined

with tipsify. The measurements confirm the earlier discussions. Removing or

limiting the size of the dead-end stack does improve the run time of tipsify a

little.

The optimisation of Forsyth’s algorithm by shrinking the size of the simulated

cache (as described in section 9.2.1) proves to give very large performance im-

provements. Changing from a cache of size 32 to size 8 cuts the run time in

half. Taking the marginal effect on ACMR into consideration, the optimisation

is definitively recommendable in all cases where the run time is critical.

The clustering process needed for overdraw reduction turns out to be heavy.

Compared to the original triangle reordering in tipsify, clustering makes the run

times almost three times longer. This is probably mostly due to the floating point

calculations needed for summing and averaging the cluster centre and normal.

Forsyth’s algorithm also turns out to be more than three times slower than tipsify.

This is due to the fact that Forsyth’s algorithm chooses each triangle individually

instead of emitting a few triangles for each choice made as in tipsify. Selecting

each triangle individually as in Forsyth’s algorithm may allow for better ACMR

results, though. Forsyth’s algorithm additionally needs heavy data structure

update work, compared to tipsify.

49

0 10 20 30 40 50 60
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Simulated cache size

A
C

M
R

Comparison of tipsify to Forsyth’s algorithm (Bunny)

Forsyth’s algorithm
Tipsify 10
Tipsify 16
Tipsify 40

0 10 20 30 40 50 60
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Simulated cache size

A
C

M
R

Comparison of tipsify to Forsyth’s algorithm (Dragon)

Forsyth’s algorithm
Tipsify 10
Tipsify 16
Tipsify 40

0 10 20 30 40 50 60

0.7

0.8

0.9

1

1.1

1.2

1.3

Simulated cache size

A
C

M
R

Comparison of tipsify to Forsyth’s algorithm (Car)

Forsyth’s algorithm
Tipsify 10
Tipsify 16
Tipsify 40

Figure 10.1: Comparison of ACMR between tipsify and Forsyth’s algorithm on

three different models.

50

Bunny1 Bunny2 Bunny3 Bunny4

Tipsify + overdraw reduction 633 149 40.2 15.49

Original tipsify (unlimited DES) 206 45 12.5 5.78

Tipsify, DES 128 189 43 11.9 5.47

Tipsify, no DES 179 40 11.1 5.31

Forsyth’s, cache 32 1233 267 58.3 13.28

Forsyth’s, cache 16 (modified) 832 182 39.2 8.91

Forsyth’s, cache 8 (modified) 599 130 27.2 6.41

Forsyth’s, cache 8 (original) 588 125 26.6 6.09

Triangles 69451 16301 3851 948

Table 10.1: Run times (in milliseconds) for the algorithm variants, on the Stanford

bunny, on an E51. Tipsify was run with different kinds of dead-end stack (DES),

and the original version of tipsify was run with clustering for overdraw reduction.

Forsyth’s algorithm was tested with different cache sizes. Sizes 32 and 8 were

tested with the original score function. Sizes 16 and 8 were also tested with the

same score function values as for size 32, marked modified in the table.

The run times of both algorithms vary almost completely linearly with the number

of triangles, confirming the complexity analysis in the original articles. The run

time as a function of the number of triangles for some algorithm variants are

illustrated in figure 10.2.

10.4 Comparison conclusions

If the cache size is completely unknown, which mostly is the case when doing the

reordering off-line at the content creation stage, Forsyth’s algorithm generally is

a safe choice. Otherwise, tipsify might give better results if the exact cache size

and behaviour is known. If the reordering run time is critical, tipsify with an

underestimate of the cache size might give satisfactory results.

The memory usage of the algorithms is quite similar. By applying all the al-

gorithm specific optimisations mentioned, both use 22.625t bytes, with another

10t bytes removable from both by limiting the number of triangles to 65535 and

outputting triangle indices instead of the actual vertex indices.

51

0 1 2 3 4 5 6 7

x 10
4

0

200

400

600

800

1000

1200

1400

Number of triangles

R
un

 ti
m

e
(m

s)

Run time as function of the mesh size

Tipsify, unlimited DES
Tipsify, no DES
Forsyth’s, cache 32
Forsyth’s, cache 8 (modified)

Figure 10.2: Run times as a function of the mesh size.

52

Chapter 11

Rendering performance tests

To evaluate the usefulness of the optimisations, frame rates for rendering different

models were measured when different optimisations were applied. The results are

discussed and presented below.

11.1 Triangle reordering

The maximum benefit of reordering was tested by comparing the rendering perfor-

mance of a completely random triangle ordering (as the worst case), the original

order and the orders generated by tipsify and Forsyth’s algorithm. The orders

generated by the algorithms are not the optimal orders, but they still give an

estimate of the possible variation range.

The results are listed in table 11.1. These tests were run with OpenGL and

OpenGL ES applications specifically constructed for these tests. The mobile re-

sults are from testing with the bunny model, the laptop results from the dragon

E51 E65 E90 NVIDIA ATI

Random 1.23 0.71 3.50 2.50 26.01

Original 1.68 0.94 3.50 4.28 45.42

Tipsify (best) 2.78 1.69 3.76 10.13 101.39

Forsyth’s 2.67 1.64 3.67 9.95 99.97

Best tipsify parameter 38 22 6 12 15

Relative improvement 65% 80% 7% 137% 123%

Table 11.1: Comparison of frame rates for random, original and tipsified orders

and orders generated by Forsyth’s algorithm

53

0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ACMR

R
en

de
rin

g
tim

e

The rendering time as a function of the ACMR, E51

Measured samples
Fitted line

0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

ACMR

R
en

de
rin

g
tim

e

The rendering time as a function of the ACMR, E65

Measured samples
Fitted line

0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

ACMR

R
en

de
rin

g
tim

e

The rendering time as a function of the ACMR, NVIDIA

Measured samples
Fitted line

0.5 1 1.5 2 2.5 3
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

ACMR

R
en

de
rin

g
tim

e

The rendering time as a function of the ACMR, ATI

Measured samples
Fitted line

Figure 11.1: Rendering time as a function of the ACMR.

model. Note that the result from tipsify is the best achieved, even though

Forsyth’s algorithm might give better results than tipsify for most other param-

eter values to tipsify.

The actual benefit of reordering of course depends on the original ordering. For

the models tested in this case, the performance of the original orderings is much

closer to the performance of the random orderings than to the optimised orderings.

Simulations of the meshes show an ACMR of about 2.0 for the bunny model and

around 1.2 to 1.8 for dragon, depending on the simulated cache size.

Assuming that the rendering time of a frame consists of one part of constant

length and one part directly proportional to the ACMR, the rendering frame

rate for a theoretical ordering with an ACMR of 0.5 can be estimated. For this

calculation, the actual ACMR values corresponding to the timed tests are needed.

However, they are usually not available. For the random orderings, the ACMR

can be assumed to be 3. The rest of the ACMR estimates can be taken from

simulations. The best tipsify parameter value is used as an estimate of the cache

size. The cache size for both ATI and NVIDIA is assumed to be 16, for E51 and

E65 it is assumed to be 38 and 22 respectively.

54

Original Draw order Random

bunny1-opt 2.72 2.79 2.63

bunny1 2.77 2.84 2.68

grid 9.72 9.74 9.76

hi_dog 5.66 5.74 5.58

mapanimlow 13.21 13.17 13.14

texturedcar 11.13 11.28 11.10

Table 11.2: Frame rates for different vertex orderings, on E51, with triangles

reordered by tipsify

Using these four frame rate samples and their corresponding frame rates, the

frame rendering time can be approximated using the method of least squares, as

visualised in figure 11.1. Using the extrapolated rendering time for an ACMR

of 0.5, the best achievable frame rates would be 2.91 and 1.82 for E51 and E65

respectively and 12.8 and 129.0 for NVIDIA and ATI respectively. The conclusion

is that there is not much left to be gained on E51 and E65 in this area, since

they have quite large caches already and the filling part of the rendering time

is large. It is worth noting that the filling part of the rendering time is very

large even though the test models used simple, flat shading of the triangles. ATI

and NVIDIA would gain slightly more by using larger caches, allowing for even

lower ACMR. The effect would in practice not be as dramatic as these tests show,

though, when using more complex filling (as they are designed for) than in these

test cases.

11.2 Vertex reordering

The actual gain of vertex reordering is highly dependent on the environment, for

example, the hardware memory cache setup. The relative size of the gain also

depends on how large the memory access time is compared to the total rendering

time. To get as visible results as possible, this was tested with efficient triangle

orders, instead of the original triangle orders. The tests were conducted on M3G

models, with the reordering algorithms integrated into the M3G library.

The results from comparing the original vertex ordering, vertices ordered accord-

ing to the draw sequence and vertices ordered randomly on an E51 are shown in

table 11.2. The variation is very small, not much larger than the measurement

55

Original Draw order Random

bunny 107.0 110.6 101.6

dragon 10.0 10.0 9.7

NVIDIA

Original Draw order Random

bunny 473.1 485.5 451.5

dragon 101.3 101.7 90.1

ATI

Table 11.3: Frame rates for different vertex orderings on laptop chipsets, with

triangles reordered by tipsify

noise. Results from the laptop chipsets are listed in table 11.3. The dragon model

seem to have a good ordering initially, since ordering the vertices according to

the drawing order gives very small improvements. The bunny model gives a little

larger improvements though, but also there the difference between the best and

the original case is much smaller than between the worst and the original case.

The conclusion is that the memory access part of the rendering times in the

tested environments is very small. Therefore, reordering the vertices is by far not

as important as reordering the triangles. If the reordering can be done without

any other negative effects on, for instance, loading times (by doing the reordering

at the content creation stage), it is of course recommended.

11.3 Overdraw reduction

To test the possible gain from avoiding overdraw, a special model was constructed

for this situation. The model contains one single mesh, consisting of a number

of concentric spheres. The best case mesh contains the triangles ordered from

the outermost to the innermost (named -in), while the worst case mesh has the

triangle in the opposite order, going from the innermost to the outermost (named

-out). In the best case, the outer sphere is drawn initially. After that, the triangles

for the rest of the spheres are rasterised, but all of them fail the depth test and

do not update the colours of the pixels. This was tested for models with 3, 50

and 150 spheres. To get heavier colour calculations, the spheres are textured with

trilinear filtering.

56

E51 E90

orig. reordered orig. reordered

sphere3-in 13.44 12.63 63.30 63.24

sphere3-out 9.09 12.93 63.29 63.22

sphere50-in 2.58 2.48 24.66 24.32

sphere50-out 0.78 2.45 24.46 24.31

NVIDIA ATI

orig. reordered orig. reordered

sphere3-in 319.4 316.4 619.4 612.4

sphere3-out 282.7 317.4 501.5 597.4

sphere50-in 51.8 51.4 240.0 230.5

sphere50-out 32.3 51.8 80.2 234.3

sphere150-in 18.7 18.7 104.8 100.2

sphere150-out 11.9 18.4 28.4 100.0

Table 11.4: Frame rates for the test models with concentric spheres, for E51, E90

and the laptop chipsets

The test results are listed in table 11.4. On the E51, with software rendering,

there is obviously a big difference for the extreme case with 50 spheres, but for

the more normal case of 3 spheres and thus 3 layers of overlapping surfaces the

difference is much smaller. By enabling clustering in the tipsify reordering almost

similar frame rates were achieved for both kinds of each model, roughly the same

frame rates as for the original best case models. The threshold λ for splitting the

mesh into clusters, as described in section 5.3, was set to 0.9 in this test, to get

small enough clusters.

The test results from the E90 are less obvious, though. The MBX chipset uses

a technique called tile based deferred rendering, to avoid rendering pixels which

will not be visible. In a sense, MBX does an overdraw reduction pass of its own,

for every rendered frame. Therefore, the results are almost identical for both

versions of the models.

The results from the laptop chipsets do not differ significantly in behaviour from

the software rendering results. The potential gains on reasonable amounts of

overdraw (the case with 3 spheres) are small.

57

11.3.1 Practical issues

The clustering needs to know the target threshold λ. If the mesh is large, any

generic threshold (e.g., 0.7) might work fine, assuming that it gives sufficiently

many small clusters. If the mesh is small and mostly limited by the fill rate, it

might benefit much more from reducing overdraw than from lowering the ACMR.

For small meshes, a generic λ might not be achieved at all, leaving the mesh in

one single cluster in the worst case. In extreme cases, optimal overdraw reduction

could be achieved by shrinking each cluster to individual triangles. Therefore,

for this to be used automatically, some estimate of whether the transform rate or

the fill rate is the most limiting factor is needed, guiding the choice of λ.

Another problem is that it must be confirmed that the model is intended to be

viewed from the outside, before the occlusion potential estimate makes sense. Cal-

culating the occlusion potential also needs normals, which may not be available

in all meshes. (Admittedly, triangle normals can be generated, further increasing

the run time of the algorithm, though.)

Most meshes occlude themselves very little. In all convex bodies, every pixel is

drawn only once if backface culling is used, or at worst twice otherwise. Only

the concave parts of meshes can occlude other parts of the mesh. Therefore the

potential gain from enabling this on most real-world meshes is very small.

58

Chapter 12

M3G integration

12.1 General

The current version (1.1) of M3G limits the order of data input, both through

the API and through the file format, to be in triangle strip format [AEHR05].

Generally, if possible, reordering should be done at the content creation stage,

but the triangle strip format is a bottleneck when creating content for M3G. By

reordering internally in M3G, better vertex cache usage is possible than what

could be achieved otherwise, since the triangles can be reordered to arbitrary

order without making many inefficient short strips.

On the other hand, internal reordering could spoil the initial ordering, if that

ordering was more clever (e.g., by having more information about the intended

usage) than what the internal reordering algorithm can achieve. Blindly opti-

mising for reduced vertex transforming might be harmful for the performance if

the mesh actually was most limited by triangle filling speed and the initial order

perhaps was chosen to reduce overdraw.

The M3G specification does not explicitly state that triangles must be drawn in

the order they are specified in the index buffers, giving freedom to do internal

reordering within the index buffers if desired. In most cases, rendering triangles

in another order does not noticeably change the end result, but if depth buffering

is disabled or blending is used, the end result may actually change remarkably.

To avoid problems in these situations, even though the M3G specification would

allow any drawing order, the original ordering must be preserved either explicitly

as the original index buffer or implicitly as a triangle index mapping allowing the

implementation to revert the index buffer to the original ordering. If a reordered

59

mesh is to be drawn in any of those cases, the original ordering should be used

instead.

12.2 Integration

The reordering of triangles can be implemented in an M3G library completely

within the TriangleStripArray class. To be able to determine the drawing mode

(blending, depth testing), the Mesh class must also be modified, to pass along

the Appearance object used for rendering each submesh to the IndexBuffer sub-

classes. If overdraw reduction is wanted, the vertex buffers are needed during

the reordering. In that case, the reordering must be coordinated from the Mesh

class.

The reordering must be made to fail quietly. If there is not enough memory for

the temporary buffers needed to reorder the triangles, the reordering should be

cancelled. This should not be reported as an error, though, since the scene is

renderable equally well without reordering.

Another potential problematic situation lies in the memory usage. When adding

such a non-critical enhancement as triangle reordering, scenes which fit into mem-

ory earlier must still work after adding such an enhancement, even though there

might not be enough memory for the reordering for that particular scene. A

reordered index buffer almost unavoidably uses more memory than the original,

since the original ordering must be preserved in some way, and the reordered tri-

angles are stored as triangle lists instead of triangle strips. In some extreme cases,

though, a reordered triangle list and a mapping to restore the original ordering

may even be smaller than the original triangle strips, if the original strips were

very inefficient.

If each index buffer is reordered immediately when created if there is enough

memory, the first index buffers will all be reordered, since there is plenty of

memory at that stage. Due to the excess memory usage due to reordering of the

first index buffers, there may not be enough memory to create even the absolutely

essential parts of the rest of the objects. Therefore, to avoid regressions, the

reordering should be done after all the essential memory allocations have been

done, for example, when the first frame is rendered. In dynamic scenarios where

new objects are created even after that, this solution is not sufficient.

Another slightly more complicated solution is to keep track of all the allocations

60

of non-essential data. When the implementation runs out of memory, it first tries

to free parts of the non-essential data and then tries again.

To evaluate the benefits of integration while preserving simplicity in the test

solution, reordering was implemented and integrated at the mesh creation stage.

12.2.1 Vertex reordering

Even though reordering of vertices seems like a simple operation (vertex data is

reordered, and indices in the index buffers are updated according to the mapping),

it is much more complicated in a general case.

Implementing it internally in M3G is not trivial. In M3G, vertex data is stored

in separate buffers (separate for each vertex attribute such as position, normal,

colour, texture coordinates). If vertices are reordered, the vertex data must be

kept coherent by either reordering all vertex arrays associated with the same index

buffers using a similar mapping or not reordering them at all. Conversely, if one

vertex buffer is used by many index buffers, all index buffers must be updated

with the same mapping.

Objects can be shared, meaning that the object is referenced by two or more

other objects. The references are one-way, though, meaning that the objects do

not know themselves which objects have references to them. If one vertex data

array is shared by two different meshes, both meshes should be reordered with

the same mapping. This kind of situation is illustrated in figure 12.1.

Another complicated situation is within skinned meshes. In skinned meshes, the

actual vertex indices are significant and are not completely encapsulated within

the class. When attaching bones to skinned meshes, the bones are attached to

ranges of vertex indices. Since this, in principle, could happen at any time at run

time, the mapping would have to be stored within the object, to allow conversion

from the indices given as parameters to their new positions.

Given all these complications, vertex reordering internally within M3G is not

recommendable.

12.3 Testing of simple static M3G files

For simple but easily measurable tests, the M3G test models mentioned in section

7.2 were used.

61

: Mesh: Mesh

: IndexBuffer : IndexBuffer

: VertexBuffer : VertexBuffer

positions :
VertexArray

normals :
VertexArray

colors :
VertexArray

colors :
VertexArray

Figure 12.1: Example of shared objects in M3G.

Original Tipsify 30 Forsyth Lists Mixed

bunny1-opt 1.91 2.72 2.63 1.92 1.92

bunny1 1.56 2.78 2.68 1.66 1.67

grid 9.74 9.86 9.93 9.81 9.85

hi_dog 5.39 5.43 5.65 5.43 5.46

mapanimlow 13.19 13.48 13.35 13.13 13.30

texturedcar 10.53 11.18 11.24 10.64 10.65

Table 12.1: Benchmarks on E51, measurements given in frames per second

The models were tested by rendering them unmodified, reordered by tipsify with

a target parameter of 30, reordered by Forsyth’s algorithm, converted to triangle

lists and selectively converted to lists if the IPT value for a submesh was over 3.

Results from testing on E51 are shown in table 12.1. The results show large

gains on the bunny model, which intentionally is used as a very vertex transform

intensive model. The other models consisting of actual M3G content also achieve

speedups, but much smaller gains, since they have fewer vertices, less complex

vertex transforming (e.g., usually no lighting at all) and more heavy pixel filling

(using texturing).

On E65, the tests mostly showed similar improvements as on E51, as shown in

table 12.2. The relative improvements were of the same magnitude as on E51.

62

Original Tipsify 30 Forsyth Lists Mixed

bunny1-opt 1.21 1.57 1.57 1.15 1.12

bunny1 0.82 1.57 1.57 0.89 0.89

grid 6.57 6.65 6.64 6.61 6.53

hi_dog 3.70 3.83 3.84 3.68 3.68

mapanimlow 7.89 8.13 8.13 7.96 7.89

texturedcar 6.34 6.80 6.88 6.45 6.44

Table 12.2: Benchmarks on E65, measurements given in frames per second

Original Tipsify 30 Forsyth Lists Mixed

bunny1-opt 5.41 4.00 3.54 7.04 5.41

bunny1 1.76 3.50 3.50 3.30 3.32

grid 21.33 21.06 20.23 21.13 21.50

hi_dog 8.94 9.57 9.36 11.61 9.75

mapanimlow 31.61 31.43 29.89 31.19 32.01

texturedcar 51.50 40.84 39.91 46.13 51.88

Table 12.3: Benchmarks on E90, measurements given in frames per second

Benchmark results from the E90 are listed in table 12.3. Most models except

hi_dog and bunny1 show no improvements when reordering for vertex cache util-

isation (tipsify 30 and Forsyth’s algorithm) and actually perform worse. Hi_dog

and bunny1-opt perform better than both the original version and the reordered

versions when preserving the original ordering and just converting the triangle

strips into lists. These results, and the earlier conclusion that the cache is very

small, matches the hints in Best Practices for HW-Accelerated Graphics Opti-

mization from Forum Nokia [FN07], which says that the optimal format for the

MBX chip is strip-ordered triangles in triangle lists.

The mixed setting (converting submeshes from strips to lists if their IPT value is

over 3) gives better results than converting everything to lists for some meshes,

but worse results for some. By adjusting the threshold for conversion, those

results can be improved further, but no single threshold value gives the best

results for all meshes.

63

12.4 Testing of ordinary applications

When testing the effect on triangle reordering on ordinary applications, the orig-

inal orderings were compared to the orderings returned by tipsify with the pa-

rameter 30, on an E51.

Testing results from testing the applications JBenchmark HD, JBenchmark PRO

and Ducati 3D Extreme are listed in tables 12.4, 12.5 and 12.6 respectively. The

measurements without an unit specified are unitless scores.

In most test cases, the results from triangle orders reordered by tipsify were

as good as or better than the original results. The largest improvements were

observed in the synthetic test cases. In some of the scenes simulating complete

games, tipsify actually made the results a little worse. The loading performance

as tested by JBenchmark PRO was, naturally, worse when doing the triangle

reordering.

64

Original Tipsify Unit

Smooth triangles 105330 111287 Triangles/s

Textured triangles 84535 87853 Triangles/s

Gaming 162 159

Gaming 5.4 5.3 Frames/s

Table 12.4: JBenchmark HD test results

Original Tipsify Unit

Lights: Ambient x 1 120548 132808 Triangles/s

Lights: Omni x 1 114419 125656 Triangles/s

Lights: Parallel x 1 138937 150175 Triangles/s

Lights: Parallel x 2 135872 147110 Triangles/s

Lights: Parallel x 4 128721 139959 Triangles/s

Lights: Parallel x 8 119527 130764 Triangles/s

Lights: Spot x 1 119527 131786 Triangles/s

M3G CarRace - LQ 727 735 Frames

M3G CarRace - MQ 381 397 Frames

M3G FPS - LQ 288 295 Frames

M3G FPS - MQ 193 197 Frames

M3G loading 12 10

MorphingMesh 209 216 Frames

SkinnedMesh: Few Bones 307 320 Frames

SkinnedMesh: Many Bones 273 292 Frames

Triangles: Flat Shaded + Color 162434 173672 Triangles/s

Triangles: Smooth Shaded + Color 150175 159369 Triangles/s

Triangles: Textured 127700 134851 Triangles/s

Triangles: Textured + Color 118505 123613 Triangles/s

Table 12.5: JBenchmark PRO test results. Higher numbers are better in all of

the cases.

Original Tipsify Unit

Score 40.2 41.9

FPS 6.9 7.2 Frames/s

Table 12.6: Ducati 3D Extreme test results

65

Chapter 13

Conclusions

13.1 Summary of results

The presented improvements to the algorithms make them use less memory or

give them better run time performance, making them more suitable for use in

embedded environments. Limiting the dead-end stack in tipsify to a fixed size

reduces the algorithm’s peak memory consumption by approximately 30%, and by

simulating a smaller cache in Forsyth’s algorithm, the run time of that algorithm

is cut in half.

Their memory usage is low enough and they run fast enough to be used on the

target devices. The goal that was defined for the algorithm improvements can

thus be considered achieved. Tipsify has a definitive advantage over Forsyth’s

algorithm regarding run time, but if the cache size is unknown Forsyth’s algorithm

may be a better choice.

The vertex cache utilisation algorithms give very large improvements in specific

test cases where vertex transforming is the largest bottleneck, for example, im-

proving the frame rate by over 60%. Most of the tested existing M3G content,

however, is mainly limited by the fill rate of the renderer. Thus, vertex cache op-

timisations generally only give minor improvements on the existing M3G content,

especially on software renderers where the fill rate generally is a bottleneck.

Vertex reordering gives only minor improvements, and overdraw reduction only

improves very specific cases.

Converting triangle strips to triangle lists if the strips are inefficient is a simple

optimisation that saves memory, and can be enabled without compromising on

any other factor. In some specific cases such as on the MBX chip on E90, this

66

also gives rendering time improvements, since the chip prefers the triangle list

format.

As for integrating the optimisations into scene graph frameworks, vertex reorder-

ing was determined to be too complicated when vertex and triangle data is spread

across sharable objects. Overdraw reduction cannot be enabled automatically,

since it assumes knowledge about the meshes which is not easily available. Con-

verting inefficient triangle strips to lists has no direct drawbacks and can be

recommended generally.

Triangle reordering for vertex cache utilisation can easily be integrated. In most

cases, it either improves the performance or does not affect it at all. Only in

a few cases did it degrade the performance a little. The benefit on the tested

existing M3G content was small in general, though. Therefore, considering that

it requires more memory both during the reordering and afterwards when storing

the original order, the benefits are not large and clear enough to outweigh the

possible risks. Enabling this cannot be recommended unanimously, but may still

be considered.

13.2 Future work

The embedded environments will keep on developing and they will get even better

graphics capabilities and less limiting processing and memory resources. The need

for optimisations will not decrease, though, if products are to stay competitive.

The current, unoptimised 3D content will still be available. Instead of updating

and optimising all of the old content, methods of automatically optimising any

content will become even more desired.

The current algorithms for reordering triangles for better vertex cache usage give

very good results. The main target in improving the algorithms is not getting

even better cache utilisation, since the current ones already are quite close to the

theoretical limits. Instead, the memory usage and run time could still be improved

even if it would compromise on the ACMR results. An algorithm combining the

properties of tipsify and Forsyth’s algorithm would be desirable, running as fast

as tipsify but generating orders universally efficient on any cache size without

targeting any specific size.

If these kinds of optimisations are to be enabled automatically and transparently,

methods for fast detection of the bottlenecks are needed. If the view independent

overdraw reduction is to be used, the properties and usage of the model must be

67

detected and a suitable value for the clustering threshold λ has to be estimated.

If a model is well optimised initially, that fact should be detected, to avoid unnec-

essary optimisation. The cases where the current reordering algorithms degrade

the performance should be detected and analysed, in order to either improve the

algorithms or avoid doing reordering in those cases.

68

Sammanfattning

Introduktion

Inom realtidsrenderad 3D-grafik i mobila och övriga inbyggda datorsystem är

man ofta tvungen att göra stora kompromisser för att nå acceptabel prestanda.

De här kompromisserna försämrar ofta den visuella kvaliteten på renderingen.

Realtidsrenderade 3D-modeller är vanligtvis konstruerade av trianglar. Det finns

dock en grupp optimeringar som bygger på att ändra ordning eller format på tri-

angeldatan, vilket inte förändrar kvaliteten på slutresultatet men kan ge markant

bättre prestanda i vissa fall.

Dessa optimeringar kunde till viss del appliceras på 3D-modellerna då de skapas,

men genom att integrera dem i biblioteksrutiner kan man få allt innehåll att dra

nytta av optimeringarna utan att explicit uppdatera och optimera alla existerande

modeller.

Optimeringar baserade på ordning och format

Cachning av transformerade noder

Då trianglar renderas så måste de noder (eng. vertices) som används transfor-

meras från de koordinater de har inom objektet till koordinater i världens koor-

dinatsystem och därifrån vidare till kamerans koordinatsystem, för att till slut

projiceras till 2D-koordinater. Samtidigt transformeras normalvektorerna för att

beräkna ljussättningskoefficienter. De här transformationerna är tunga operatio-

ner och man vill således göra så få transformationer som möjligt. Genom att

mellanlagra resultatet av transformationen kan man reducera antalet transfor-

mationer som behöver göras.

Tidigare utforskades idéer om att explicit hantera en buffert för dessa trans-

formerade noder. Bland andra Bar-Yehuda och Gotsman [BYG96] presenterade

69

metoder för hur detta kunde göras. De här metoderna slog dock inte igenom i

praktiken. Hoppe presenterade dock 1999 idén att problemet kunde lösas med en

transparent cache [Hop99]. På så sätt krävs inga förändringar i de gränssnitt eller

dataformat som används.

För att effektivt utnyttja en eventuell cache för transformerade noder bör man

ordna om trianglarna så att de används i en sådan ordning att trianglarna återan-

vänder noder som nyligen använts. Många algoritmer har utvecklats för att lösa

problemet att ordna trianglarna på ett sådant sätt, men de flesta algoritmerna

har varit relativt långsamma.

Forsyth presenterade 2006 en algoritm som ordnar om trianglar för att ge ord-

ningar som är effektiva oberoende av den exakta storleken på cachen [For06]. Det

anmärkningsvärda med den här algoritmen är att den kör i snabb linjär tid. San-

der m.fl. introducerade 2007 en motsvarande algoritm kallad tipsify [SNB07], som

även den kör i linjär tid. Till skillnad från Forsyths algoritm så försöker tipsify

optimera ordningen för en given cachestorlek.

Sortering av noddata

Då en nod transformeras måste datan för den noden läsas från minnet från den

buffert där datan finns lagrad. Läsningen är effektivare om den sker så sekventiellt

som möjligt, dvs. data läses från minnesplatser nära andra platser som nyligen

lästs. För att åstadkomma en nästintill sekventiell läsordning kan man ordna om

noddatan genom att skapa en ny tom buffert för noddata och börja gå igenom

triangeldatan. Då en nod används som inte använts tidigare sätts den till efter

den senast tillsatta noden i den nya bufferten. Indexen i triangeldatan uppdateras

samtidigt enligt vart noden flyttats i den nya bufferten. På så sätt flyttar man

bara om noderna inom bufferten, trianglarna ritas fortfarande i samma ordning

som tidigare.

Med en sådan ordning kommer alla noder att läsas sekventiellt, förutom de noder

som återanvänds och som inte finns mellanlagrade i en cache för transformerade

noder.

Minskning av överritning

Då flera trianglar överlappar samma bildpunkter, används ofta tekniken z-buffring

för att avgöra vilken av trianglarna som ska synas i vilken bildpunkt. En buffert

70

innehåller djupkoordinaten för varje ritad bildpunkt. Då en ny triangel ritas kan

man med hjälp av de här djupkoordinaterna avgöra huruvida färgen på varje

bildpunkt ska uppdateras. Om beräkningen av färgen är tung, t.ex. om stora

texturer används tillsammans med avancerad filtrering, kan man spara mycket

arbete genom att rita om bildpunkterna så få gånger som möjligt.

Således kan man spara arbete genom att först rita de trianglar som kommer att

vara synliga, för att senare rita de trianglar som kommer att vara mer skymda.

På så sätt uppdateras färgen för varje bildpunkt färre gånger och färre färgbe-

räkningar görs jämfört med om trianglarna ritas i godtycklig ordning.

Vilka trianglar som är synliga och vilka som är skymda beror naturligtvis på

varifrån scenen betraktas. Sander m.fl. presenterade dock en metod för att sortera

kluster av trianglar för att minska överritning oberoende av betraktningsvinkel

[SNB07]. Genom att sortera hela kluster istället för individuella trianglar kan

man bibehålla effektiv användning av en nodcache inom klustren, förutsatt att

klustren är tillräckligt stora. Då kan också klustren ritas i vilken ordning som

helst, utan att försämra nodcache-prestandan.

Konvertering av triangeldata

Triangeldata lagras vanligtvis antingen som triangellistor, där alla tre noder i

triangeln är explicit angivna, eller som triangelremsor (eng. triangle strips), där

en triangel definieras av de två senaste noderna samt en ny. Om remsorna är

effektiva tar de mindre lagringsutrymme än fullständiga listor. Att konstruera

effektiva remsor är dock inte helt trivialt och det förekommer i praktiken en hel

del ineffektiva remsor.

Om data anges som remsor och det framkommer att remsorna är ineffektiva

kan man således spara minne och därmed också minnesbandbredd genom att

konvertera dem till triangellistor istället.

Förbättringar och kompromisser

Minnesanvändning i tipsify

Algoritmen tipsify innehåller en stack där tidigare använda noder lagras. Den

här stacken används för att hitta nya närbelägna punkter att fortsätta ifrån då

71

algoritmen gått in i en återvändsgränd, där alla närbelägna trianglar redan har

behandlats.

Det är dock svårt att uppskatta hur stor stacken kommer att bli, så om man

vill undvika att allokera mera minne åt stacken under algoritmens gång är man

tvungen att bestämma en övre gräns för dess storlek. I praktiken används högst

ungefär hälften av det maximala antalet element.

Simuleringar visar att slutresultatet endast blir marginellt sämre om man lämnar

bort den här stacken helt. Ännu bättre kompromisser nås om man använder en

stack av en begränsad storlek, där endast de senaste N elementen lagras. Med

storleken N = 128 är cacheanvändningen nästan lika effektiv som då stacken var

obegränsad, trots att man sparar in mycket på minnesanvändningen.

Uppskattning av antalet noder att transformera

Ett av stegen i tipsify går ut på att uppskatta hur många nya noder som måste

transformeras för att rita ett visst antal nya trianglar. Den ursprungliga algo-

ritmen använde för säkerhets skull en överskattning av antalet noder som måste

transformeras. I vissa fall åstadkommer den här överskattningen dock kraftigt

suboptimala resultat. Det visar sig att mer realistiska uppskattningar ger bättre

resultat i dessa samt några andra fall.

Effektivering av Forsyths algoritm

Forsyths algoritm simulerar en cache av en viss storlek, trots att den genererar

ordningar som ska fungera bra oavsett hur stor den riktiga cachen är. Algorit-

mens körtid beror till stor del på hur stor cache som simuleras. Genom att krympa

den simulerade cachen får man algoritmen att köra mycket snabbare, men man

offrar samtidigt en del av slutresultatet. Om man därtill justerar poängsättnings-

funktionen som algoritmen använder blir den negativa inverkan på slutresultatet

mycket mindre.

Jämförelse av algoritmerna

Tipsify ger oftast bättre resultat än Forsyths algoritm, förutsatt att man känner

till hur stor cachen är. Om man inte känner till det och överskattar cachens storlek

ger tipsify mycket suboptimala resultat. Därför är Forsyths algoritm ett säkrare

72

val om man inte känner till cachens storlek eller inte har möjlighet att analysera

dess beteende genom att testa med olika parametrar till tipsify. Tipsify är dock

mer än tre gånger snabbare än Forsyths algoritm på att sortera trianglar.

Testresultat

Algoritmerna för att sortera trianglarna för att förbättra användningen av nod-

cachen ger stora förbättringar av renderingstiderna på modeller där transfor-

meringen av noder är den största flaskhalsen. En testmodell som ursprungligen

renderades med 1,68 bilder per sekund på en telefon renderades med 2,78 bilder

per sekund då den optimerats. Modeller som förekommer i riktiga tillämpningar

konstruerade med mobiltelefoner i åtanke förbättras inte lika mycket, eftersom

flaskhalsen i sådana modeller främst är att rasterisera och fylla trianglarna. För

sådana modeller förbättras renderingshastigheten endast med några procent.

Att sortera noddatan för att läsa data i en mer sekventiell ordning ger ännu

mindre förbättringar, förbättringarna rör sig om någon enstaka procent.

Om trianglarna sorteras för att minska överritning kan man vinna väldigt mycket,

förutsatt att modellen i fråga faktiskt överlappar sig själv i många lager. En

fullständigt konvex modell överlappar aldrig sig själv och för övriga modeller

är det endast de konkava partierna som eventuellt kan överlappa andra delar

av modellen. Därför är det tveksamt hur stor nytta den här optimeringen gör i

praktiken.

Resultatanalys

Algoritmerna är tillräckligt snabba och minnessnåla för att kunna användas in-

tegrerade i bibliotek i inbyggda miljöer, framför allt om de förbättringar som

presenterats används. Nyttan av att sortera trianglarna för förbättrad använd-

ning av nodcachen är dock inte tillräckligt stor på största delen av de 3D-modeller

som förekommer för att uppväga riskerna i att sorteringen kräver en del minne.

Sortering av noddata är för komplicerat att implementera i generella bibliotek

där noddatan är utspridd i många objekt som kan användas i flera modeller inom

samma scen.

Sanders metod för att sortera triangelkluster för att undvika överritning går inte

73

att tillämpa automatiskt på alla modeller eftersom den kräver information om

hur modellerna kommer att användas, vilket inte finns tillgängligt automatiskt.

Att konvertera ineffektiva triangelremsor till listor är dock en enkel och säker

optimering som sparar minne och kan appliceras automatiskt utan risk.

74

Bibliography

[AEHR05] Tomi Aarnio, Sean Ellis, Jyri Huopaniemi, and Kimmo Roimela. JSR
184: Mobile 3D Graphics API for J2METM. Java Community Pro-

cess, August 2005.

[BG02] Alexander Bogomjakov and Craig Gotsman. Universal rendering se-

quences for transparent vertex caching of progressive meshes. Com-
puter Graphics Forum, 21(2):137–148, 2002.

[BM07] David Blythe and Aaftab Munshi. OpenGL R© ES Common/Common-
Lite Profile Specification. The Khronos Group, April 2007. Version

1.1.10 (Full Specification).

[BYG96] Reuven Bar-Yehuda and Craig Gotsman. Time/space tradeoffs for

polygon mesh rendering. ACM Trans. Graph., 15(2):141–152, 1996.

[FN07] Forum Nokia. Best Practices for HW-Accelerated Graphics Optimiza-
tion, October 2007.

[For06] Tom Forsyth. Linear-speed vertex cache optimisation. http://home.

comcast.net/~tom_forsyth/papers/fast_vert_cache_opt.html,

September 2006.

[Hop99] Hugues Hoppe. Optimization of mesh locality for transparent vertex

caching. In SIGGRAPH ’99: Proceedings of the 26th annual confer-
ence on Computer graphics and interactive techniques, pages 269–276,

New York, NY, USA, 1999. ACM Press/Addison-Wesley Publishing

Co.

[LY06] Gang Lin and Thomas P. Y. Yu. An improved vertex caching scheme

for 3d mesh rendering. IEEE Transactions on Visualization and Com-
puter Graphics, 12(4):640–648, 2006.

75

http://home.comcast.net/~tom_forsyth/papers/fast_vert_cache_opt.html
http://home.comcast.net/~tom_forsyth/papers/fast_vert_cache_opt.html

[SAF+06] Mark Segal, Kurt Akeley, Chris Frazier, John Leech, and Pat Brown.

The OpenGL R© Graphics System: A Specification. The OpenGL Ar-

chitecture Review Board, December 2006. Version 2.1.

[SNB07] Pedro V. Sander, Diego Nehab, and Joshua Barczak. Fast triangle

reordering for vertex locality and reduced overdraw. In SIGGRAPH
’07: ACM SIGGRAPH 2007 papers, page 89, New York, NY, USA,

2007. ACM Press.

[SWND05] Dave Shreiner, Mason Woo, Jackie Neider, and Tom Davis.

OpenGL R© Programming Guide: The Official Guide to Learning
OpenGL R©, Version 2. Addison-Wesley Professional, fifth edition,

August 2005.

[vKdSP04] Oliver Matias van Kaick, Murilo Vincente Gonçalves da Silva, and

Hélio Pedrini. Efficient generation of triangle strips from triangulated

meshes. Journal of WSCG, 12(1-3):475–481, February 2004.

76

Appendix A

Implementation of the tipsify

algorithm

Listing A.1: Sample implementation of Tipsify
1 #define __STDC_LIMIT_MACROS
2 #include <s t d i n t . h>
3 #include <s t d l i b . h>
4 #include <s t r i n g . h>
5
6 #define DEAD_END_STACK_SIZE 128
7 #define DEAD_END_STACK_MASK (DEAD_END_STACK_SIZE − 1)
8
9

10 // The s i z e o f t h e s e data t ype s c o n t r o l the memory usage
11 typedef uint8_t AdjacencyType ;
12 #define MAX_ADJACENCY UINT8_MAX
13
14 typedef int32_t VertexIndexType ;
15 typedef int32_t TriangleIndexType ;
16 typedef int32_t ArrayIndexType ;
17
18 #define ISEMITTED(x) (emitted [(x) >> 3] & (1 << (x & 7)))
19 #define SETEMITTED(x) (emitted [(x) >> 3] |= (1 << (x & 7)))
20
21 // Find the next non− l o c a l v e r t e x to cont inue from
22 int skipDeadEnd (const AdjacencyType∗ l i v e T r i a n g l e s ,
23 const VertexIndexType∗ deadEndStack ,
24 int& deadEndStackPos ,
25 int& deadEndStackStart ,
26 int nVert ices ,
27 int& i) {

77

28
29 // Next in dead−end s t a c k
30 while ((deadEndStackPos & DEAD_END_STACK_MASK) !=

deadEndStackStart) {
31 int d = deadEndStack[(−−deadEndStackPos) &

DEAD_END_STACK_MASK] ;
32 // Check f o r l i v e t r i a n g l e s
33 i f (l i v e T r i a n g l e s [d] > 0)
34 return d ;
35 }
36 // Next in input order
37 while (i + 1 < nVer t i c e s) {
38 // Cursor sweeps l i s t on ly once
39 i ++;
40 // Check f o r l i v e t r i a n g l e s
41 i f (l i v e T r i a n g l e s [i] > 0)
42 return i ;
43 }
44 // We are done !
45 return −1;
46 }
47
48 // Find the next v e r t e x to cont inue from
49 int getNextVertex (int nVert ices ,
50 int& i ,
51 int k ,
52 const VertexIndexType∗ nextCandidates ,
53 int numNextCandidates ,
54 const ArrayIndexType∗ cacheTime ,
55 int s ,
56 const AdjacencyType∗ l i v e T r i a n g l e s ,
57 const VertexIndexType∗ deadEndStack ,
58 int& deadEndStackPos ,
59 int& deadEndStackStart) {
60
61 // Best cand ida te
62 int n = −1;
63 // and p r i o r i t y
64 int m = −1;
65 for (int j = 0 ; j < numNextCandidates ; j++) {
66 int v = nextCandidates [j] ;
67 // Must have l i v e t r i a n g l e s
68 i f (l i v e T r i a n g l e s [v] > 0) {
69 // I n i t i a l p r i o r i t y
70 int p = 0 ;

78

71 // In cache even a f t e r fanning ?
72 i f (s − cacheTime [v] + 2∗ l i v e T r i a n g l e s [v] <= k)
73 // P r i o r i t y i s p o s i t i o n in cache
74 p = s − cacheTime [v] ;
75 // Keep b e s t cand ida te
76 i f (p > m) {
77 m = p ;
78 n = v ;
79 }
80 }
81 }
82 // Reached a dead−end?
83 i f (n == −1) {
84 // Get non− l o c a l v e r t e x
85 n = skipDeadEnd (l i v e T r i a n g l e s , deadEndStack ,
86 deadEndStackPos , deadEndStackStart ,
87 nVert ices , i) ;
88 }
89 return n ;
90 }
91
92 // The main reorder ing func t i on
93 VertexIndexType∗ t i p s i f y (const VertexIndexType∗ i nd i c e s ,
94 int nTriangles ,
95 int nVert ices ,
96 int k) {
97 // Vertex−t r i a n g l e adjacency
98
99 // Count the occurrances o f each v e r t e x

100 AdjacencyType∗ numOccurrances = new AdjacencyType [nVer t i c e s] ;
101 memset (numOccurrances , 0 , s izeof (AdjacencyType) ∗ nVer t i c e s) ;
102 for (int i = 0 ; i < 3∗ nTr iang l e s ; i++) {
103 int v = i n d i c e s [i] ;
104 i f (numOccurrances [v] == MAX_ADJACENCY) {
105 // Unsupported mesh ,
106 // v e r t e x shared by too many t r i a n g l e s
107 delete [] numOccurrances ;
108 return NULL;
109 }
110 numOccurrances [v]++;
111 }
112
113 // Find the o f f s e t s i n t o the adjacency array f o r each v e r t e x
114 int sum = 0 ;
115 ArrayIndexType∗ o f f s e t s = new ArrayIndexType [nVer t i c e s +1] ;

79

116 int maxAdjacency = 0 ;
117 for (int i = 0 ; i < nVer t i c e s ; i++) {
118 o f f s e t s [i] = sum ;
119 sum += numOccurrances [i] ;
120 i f (numOccurrances [i] > maxAdjacency)
121 maxAdjacency = numOccurrances [i] ;
122 numOccurrances [i] = 0 ;
123 }
124 o f f s e t s [nVer t i c e s] = sum ;
125
126 // Add the t r i a n g l e i n d i c e s to the v e r t i c e s i t r e f e r s to
127 TriangleIndexType ∗ adjacency = new TriangleIndexType [3∗

nTr iang l e s] ;
128 for (int i = 0 ; i < nTr iang le s ; i++) {
129 const VertexIndexType∗ vptr = &i n d i c e s [3∗ i] ;
130 adjacency [o f f s e t s [vptr [0]] + numOccurrances [vptr [0]]] = i ;
131 numOccurrances [vptr [0]]++;
132 adjacency [o f f s e t s [vptr [1]] + numOccurrances [vptr [1]]] = i ;
133 numOccurrances [vptr [1]]++;
134 adjacency [o f f s e t s [vptr [2]] + numOccurrances [vptr [2]]] = i ;
135 numOccurrances [vptr [2]]++;
136 }
137
138 // Per−v e r t e x l i v e t r i a n g l e counts
139 AdjacencyType∗ l i v e T r i a n g l e s = numOccurrances ;
140
141 // Per−v e r t e x caching time stamps
142 ArrayIndexType∗ cacheTime = new ArrayIndexType [nVer t i c e s] ;
143 memset (cacheTime , 0 , s izeof (ArrayIndexType) ∗ nVer t i c e s) ;
144
145 // Dead−end v e r t e x s t a c k
146 VertexIndexType∗ deadEndStack = new VertexIndexType [

DEAD_END_STACK_SIZE] ;
147 memset (deadEndStack , 0 , s izeof (VertexIndexType) ∗

DEAD_END_STACK_SIZE) ;
148 int deadEndStackPos = 0 ;
149 int deadEndStackStart = 0 ;
150
151 // Per t r i a n g l e emi t ted f l a g
152 uint8_t∗ emitted = new uint8_t [(nTr iang l e s + 7) / 8] ;
153 memset (emitted , 0 , s izeof (uint8_t) ∗ ((nTr iang l e s + 7) /8)) ;
154
155 // Empty output b u f f e r
156 TriangleIndexType ∗ outputTr iang le s = new TriangleIndexType [

nTr iang l e s] ;

80

157 int outputPos = 0 ;
158
159 // Arb i t rary s t a r t i n g v e r t e x
160 int f = 0 ;
161 // Time stamp and cursor
162 int s = k + 1 ;
163 int i = 0 ;
164
165 VertexIndexType∗ nextCandidates = new VertexIndexType [3∗

maxAdjacency] ;
166
167 // For a l l v a l i d fanning v e r t i c e s
168 while (f >= 0) {
169 // 1−r ing o f next cand ida te s
170 int numNextCandidates = 0 ;
171 int s t a r t O f f s e t = o f f s e t s [f] ;
172 int endOf f se t = o f f s e t s [f +1] ;
173 for (int o f f s e t = s t a r t O f f s e t ; o f f s e t < endOf f se t ; o f f s e t ++)

{
174 int t = adjacency [o f f s e t] ;
175 i f (! ISEMITTED(t)) {
176 const VertexIndexType∗ vptr = &i n d i c e s [3∗ t] ;
177 // Output t r i a n g l e
178 outputTr iang le s [outputPos++] = t ;
179 for (int j = 0 ; j < 3 ; j++) {
180 int v = vptr [j] ;
181 // Add to dead−end s t a c k
182 deadEndStack [(deadEndStackPos++) &

DEAD_END_STACK_MASK] = v ;
183 i f ((deadEndStackPos & DEAD_END_STACK_MASK) ==
184 (deadEndStackStart & DEAD_END_STACK_MASK))
185 deadEndStackStart = (deadEndStackStart + 1)

& DEAD_END_STACK_MASK;
186 // Reg i s t e r as cand ida te
187 nextCandidates [numNextCandidates++] = v ;
188 // Decrease l i v e t r i a n g l e count
189 l i v e T r i a n g l e s [v]−−;
190 // I f not in cache
191 i f (s − cacheTime [v] > k) {
192 // Set time stamp
193 cacheTime [v] = s ;
194 // Increment time stamp
195 s++;
196 }
197 }

81

198 // Flag t r i a n g l e as emi t ted
199 SETEMITTED(t) ;
200 }
201 }
202 // S e l e c t next fanning v e r t e x
203 f = getNextVertex (nVert ices , i , k , nextCandidates ,
204 numNextCandidates , cacheTime , s ,
205 l i v e T r i a n g l e s , deadEndStack ,
206 deadEndStackPos , deadEndStackStart) ;
207 }
208
209 // Clean up
210 delete [] nextCandidates ;
211 delete [] emitted ;
212 delete [] deadEndStack ;
213 delete [] cacheTime ;
214 delete [] adjacency ;
215 delete [] o f f s e t s ;
216 delete [] numOccurrances ;
217
218 // Convert the t r i a n g l e index array in to a f u l l t r i a n g l e l i s t
219 VertexIndexType∗ output Ind i c e s = new VertexIndexType [3∗

nTr iang l e s] ;
220 outputPos = 0 ;
221 for (int i = 0 ; i < nTr iang le s ; i++) {
222 int t = outputTr iang l e s [i] ;
223 for (int j = 0 ; j < 3 ; j++) {
224 int v = i n d i c e s [3∗ t + j] ;
225 output Ind i c e s [outputPos++] = v ;
226 }
227 }
228 delete [] outputTr iang le s ;
229
230 return output Ind i c e s ;
231 }

82

Appendix B

Implementation of Forsyth’s

algorithm

Listing B.1: Sample implementation of Forsyth’s algorithm
1 #define __STDC_LIMIT_MACROS
2 #include <s t d i n t . h>
3 #include <math . h>
4 #include <s t r i n g . h>
5
6 // Set t h e s e to a d j u s t the performance and r e s u l t q u a l i t y
7 #define VERTEX_CACHE_SIZE 8
8 #define CACHE_FUNCTION_LENGTH 32
9

10 // The s i z e o f t h e s e data t ype s a f f e c t the memory usage
11 typedef uint16_t ScoreType ;
12 #define SCORE_SCALING 7281
13
14 typedef uint8_t AdjacencyType ;
15 #define MAX_ADJACENCY UINT8_MAX
16
17 typedef int32_t VertexIndexType ;
18 typedef int8_t CachePosType ;
19 typedef int32_t TriangleIndexType ;
20 typedef int32_t ArrayIndexType ;
21
22 // The s i z e o f the p r e c a l c u l a t e d t a b l e s
23 #define CACHE_SCORE_TABLE_SIZE 32
24 #define VALENCE_SCORE_TABLE_SIZE 32
25 #i f CACHE_SCORE_TABLE_SIZE < VERTEX_CACHE_SIZE
26 #error Vertex s co r e t ab l e too smal l
27 #endif

83

28
29 // Preca l cu l a t ed t a b l e s
30 stat ic ScoreType cachePos i t i onScore [CACHE_SCORE_TABLE_SIZE] ;
31 stat ic ScoreType va l enceScore [VALENCE_SCORE_TABLE_SIZE] ;
32
33 #define ISADDED(x) (tr iangleAdded [(x) >> 3] & (1 << (x & 7)))
34 #define SETADDED(x) (tr iangleAdded [(x) >> 3] |= (1 << (x & 7)))
35
36 // Score func t i on cons tan t s
37 #define CACHE_DECAY_POWER 1.5
38 #define LAST_TRI_SCORE 0.75
39 #define VALENCE_BOOST_SCALE 2 .0
40 #define VALENCE_BOOST_POWER 0.5
41
42 // P r e c a l c u l a t e the t a b l e s
43 void i n i t F o r s y t h () {
44 for (int i = 0 ; i < CACHE_SCORE_TABLE_SIZE; i++) {
45 f loat s c o r e = 0 ;
46 i f (i < 3) {
47 // This v e r t e x was used in the l a s t t r i a n g l e ,
48 // so i t has a f i x e d score , which ever o f the t h r ee
49 // i t ’ s in . Otherwise , you can ge t very d i f f e r e n t
50 // answers depending on whether you add
51 // the t r i a n g l e 1 ,2 ,3 or 3 ,1 ,2 − which i s s i l l y
52 s co r e = LAST_TRI_SCORE;
53 } else {
54 // Points f o r be ing h igh in the cache .
55 const f loat s c a l e r = 1 .0 f / (CACHE_FUNCTION_LENGTH − 3) ;
56 s co r e = 1 .0 f − (i − 3) ∗ s c a l e r ;
57 s co r e = powf (score , CACHE_DECAY_POWER) ;
58 }
59 cachePos i t i onScore [i] = (ScoreType) (SCORE_SCALING ∗ s c o r e) ;
60 }
61
62 for (int i = 1 ; i < VALENCE_SCORE_TABLE_SIZE; i++) {
63 // Bonus po in t s f o r having a low number o f t r i s s t i l l to
64 // use the ver t , so we ge t r i d o f lone v e r t s q u i c k l y
65 f loat valenceBoost = powf (i , −VALENCE_BOOST_POWER) ;
66 f loat s c o r e = VALENCE_BOOST_SCALE ∗ valenceBoost ;
67 va l enceScore [i] = (ScoreType) (SCORE_SCALING ∗ s c o r e) ;
68 }
69 }
70
71 // Ca l cu l a t e the score f o r a v e r t e x
72 ScoreType f indVertexScore (int numActiveTris ,

84

73 int cachePos i t i on) {
74 i f (numActiveTris == 0) {
75 // No t r i a n g l e s need t h i s v e r t e x !
76 return 0 ;
77 }
78
79 ScoreType s co r e = 0 ;
80 i f (cachePos i t i on < 0) {
81 // Vertex i s not in LRU cache − no score
82 } else {
83 s co r e = cachePos i t i onScore [cachePos i t i on] ;
84 }
85
86 i f (numActiveTris < VALENCE_SCORE_TABLE_SIZE)
87 s co r e += va lenceScore [numActiveTris] ;
88 return s c o r e ;
89 }
90
91 // The main reorder ing func t i on
92 VertexIndexType∗ reorderForsyth (const VertexIndexType∗ i nd i c e s ,
93 int nTriangles ,
94 int nVer t i c e s) {
95
96 // The t a b l e s need not be i n i t e d every time t h i s f unc t i on
97 // i s used . E i ther c a l l i n i t F o r s y t h from the c a l l i n g process ,
98 // or j u s t r ep l a c e the score t a b l e s wi th p r e c a l c u l a t e d va l u e s .
99 in i t Fo r s y t h () ;

100
101 AdjacencyType∗ numActiveTris = new AdjacencyType [nVer t i c e s] ;
102 memset (numActiveTris , 0 , s izeof (AdjacencyType) ∗ nVer t i c e s) ;
103
104 // F i r s t scan over the v e r t e x data , count the t o t a l number o f
105 // occurrances o f each v e r t e x
106 for (int i = 0 ; i < 3∗ nTr iang l e s ; i++) {
107 i f (numActiveTris [i n d i c e s [i]] == MAX_ADJACENCY) {
108 // Unsupported mesh ,
109 // v e r t e x shared by too many t r i a n g l e s
110 delete [] numActiveTris ;
111 return NULL;
112 }
113 numActiveTris [i n d i c e s [i]]++;
114 }
115
116 // A l l o c a t e the r e s t o f the arrays
117 ArrayIndexType∗ o f f s e t s = new ArrayIndexType [nVer t i c e s] ;

85

118 ScoreType∗ l a s t S c o r e = new ScoreType [nVer t i c e s] ;
119 CachePosType∗ cacheTag = new CachePosType [nVer t i c e s] ;
120
121 uint8_t∗ tr iangleAdded = new uint8_t [(nTr iang l e s + 7) / 8] ;
122 ScoreType∗ t r i a n g l e S c o r e = new ScoreType [nTr iang l e s] ;
123 TriangleIndexType ∗ t r i a n g l e I n d i c e s = new TriangleIndexType [3∗

nTr iang l e s] ;
124 memset (tr iangleAdded , 0 , s izeof (uint8_t) ∗ ((nTr iang l e s + 7) /8)) ;
125 memset (t r i a n g l e S c o r e , 0 , s izeof (ScoreType) ∗ nTr iang l e s) ;
126 memset (t r i a n g l e I n d i c e s , 0 , s izeof (TriangleIndexType) ∗3∗

nTr iang l e s) ;
127
128 // Count the t r i a n g l e array o f f s e t f o r each ver tex ,
129 // i n i t i a l i z e the r e s t o f the data .
130 int sum = 0 ;
131 for (int i = 0 ; i < nVer t i c e s ; i++) {
132 o f f s e t s [i] = sum ;
133 sum += numActiveTris [i] ;
134 numActiveTris [i] = 0 ;
135 cacheTag [i] = −1;
136 }
137
138 // F i l l the v e r t e x data s t r u c t u r e s wi th i n d i c e s to the t r i a n g l e s
139 // us ing each v e r t e x
140 for (int i = 0 ; i < nTr iang le s ; i++) {
141 for (int j = 0 ; j < 3 ; j++) {
142 int v = i n d i c e s [3∗ i + j] ;
143 t r i a n g l e I n d i c e s [o f f s e t s [v] + numActiveTris [v]] = i ;
144 numActiveTris [v]++;
145 }
146 }
147
148 // I n i t i a l i z e the score f o r a l l v e r t i c e s
149 for (int i = 0 ; i < nVer t i c e s ; i++) {
150 l a s t S c o r e [i] = f indVertexScore (numActiveTris [i] , cacheTag [i

]) ;
151 for (int j = 0 ; j < numActiveTris [i] ; j++)
152 t r i a n g l e S c o r e [t r i a n g l e I n d i c e s [o f f s e t s [i] + j]] +=

l a s t S c o r e [i] ;
153 }
154
155 // Find the b e s t t r i a n g l e
156 int be s tTr i ang l e = −1;
157 int bes tScore = −1;
158

86

159 for (int i = 0 ; i < nTr iang le s ; i++) {
160 i f (t r i a n g l e S c o r e [i] > bes tScore) {
161 bes tScore = t r i a n g l e S c o r e [i] ;
162 be s tTr i ang l e = i ;
163 }
164 }
165
166 // A l l o c a t e the output array
167 TriangleIndexType ∗ outTr iang l e s = new TriangleIndexType [

nTr iang l e s] ;
168 int outPos = 0 ;
169
170 // I n i t i a l i z e the cache
171 int cache [VERTEX_CACHE_SIZE + 3] ;
172 for (int i = 0 ; i < VERTEX_CACHE_SIZE + 3 ; i++)
173 cache [i] = −1;
174
175 int scanPos = 0 ;
176
177 // Output the c u r r e n t l y b e s t t r i a n g l e , as long as t he r e
178 // are t r i a n g l e s l e f t to output
179 while (be s tTr i ang l e >= 0) {
180 // Mark the t r i a n g l e as added
181 SETADDED(bes tTr i ang l e) ;
182 // Output t h i s t r i a n g l e
183 outTr iang l e s [outPos++] = bes tTr i ang l e ;
184 for (int i = 0 ; i < 3 ; i++) {
185 // Update t h i s v e r t e x
186 int v = i n d i c e s [3∗ be s tTr i ang l e + i] ;
187
188 // Check the curren t cache pos i t i on , i f i t
189 // i s in the cache
190 int endpos = cacheTag [v] ;
191 i f (endpos < 0)
192 endpos = VERTEX_CACHE_SIZE + i ;
193 // Move a l l cache e n t r i e s from the prev ious p o s i t i o n
194 // in the cache to the new t a r g e t p o s i t i o n (i) one
195 // s t ep backwards
196 for (int j = endpos ; j > i ; j−−) {
197 cache [j] = cache [j −1] ;
198 // I f t h i s cache s l o t con ta ins a r e a l
199 // ver tex , update i t s cache tag
200 i f (cache [j] >= 0)
201 cacheTag [cache [j]]++;
202 }

87

203 // I n s e r t the curren t v e r t e x in t o i t s new t a r g e t
204 // s l o t
205 cache [i] = v ;
206 cacheTag [v] = i ;
207
208 // Find the curren t t r i a n g l e in the l i s t o f a c t i v e
209 // t r i a n g l e s and remove i t (moving the l a s t
210 // t r i a n g l e in the l i s t to the s l o t o f t h i s t r i a n g l e) .
211 for (int j = 0 ; j < numActiveTris [v] ; j++) {
212 i f (t r i a n g l e I n d i c e s [o f f s e t s [v] + j] == bes tTr i ang l e)

{
213 t r i a n g l e I n d i c e s [o f f s e t s [v] + j] =
214 t r i a n g l e I n d i c e s [
215 o f f s e t s [v] + numActiveTris [v] − 1] ;
216 break ;
217 }
218 }
219 // Shorten the l i s t
220 numActiveTris [v]−−;
221 }
222 // Update the score s o f a l l t r i a n g l e s in the cache
223 for (int i = 0 ; i < VERTEX_CACHE_SIZE + 3 ; i++) {
224 int v = cache [i] ;
225 i f (v < 0)
226 break ;
227 // This v e r t e x has been pushed o u t s i d e o f the
228 // a c t u a l cache
229 i f (i >= VERTEX_CACHE_SIZE) {
230 cacheTag [v] = −1;
231 cache [i] = −1;
232 }
233 ScoreType newScore = f indVertexScore (numActiveTris [v] ,
234 cacheTag [v]) ;
235 ScoreType d i f f = newScore − l a s t S c o r e [v] ;
236 for (int j = 0 ; j < numActiveTris [v] ; j++)
237 t r i a n g l e S c o r e [t r i a n g l e I n d i c e s [o f f s e t s [v] + j]] +=

d i f f ;
238 l a s t S c o r e [v] = newScore ;
239 }
240 // Find the b e s t t r i a n g l e r e f e r enced by v e r t i c e s in the

cache
241 be s tTr i ang l e = −1;
242 bes tScore = −1;
243 for (int i = 0 ; i < VERTEX_CACHE_SIZE; i++) {
244 i f (cache [i] < 0)

88

245 break ;
246 int v = cache [i] ;
247 for (int j = 0 ; j < numActiveTris [v] ; j++) {
248 int t = t r i a n g l e I n d i c e s [o f f s e t s [v] + j] ;
249 i f (t r i a n g l e S c o r e [t] > bes tScore) {
250 be s tTr i ang l e = t ;
251 bes tScore = t r i a n g l e S c o r e [t] ;
252 }
253 }
254 }
255 // I f no a c t i v e t r i a n g l e was found at a l l , cont inue
256 // scanning the whole l i s t o f t r i a n g l e s
257 i f (be s tTr i ang l e < 0) {
258 for (; scanPos < nTr iang le s ; scanPos++) {
259 i f (! ISADDED(scanPos)) {
260 be s tTr i ang l e = scanPos ;
261 break ;
262 }
263 }
264 }
265 }
266
267 // Clean up
268 delete [] t r i a n g l e I n d i c e s ;
269 delete [] o f f s e t s ;
270 delete [] l a s t S c o r e ;
271 delete [] numActiveTris ;
272 delete [] cacheTag ;
273 delete [] t r iangleAdded ;
274 delete [] t r i a n g l e S c o r e ;
275
276 // Convert the t r i a n g l e index array in to a f u l l t r i a n g l e l i s t
277 VertexIndexType∗ ou t Ind i c e s = new VertexIndexType [3∗ nTr iang l e s] ;
278 outPos = 0 ;
279 for (int i = 0 ; i < nTr iang le s ; i++) {
280 int t = outTr iang l e s [i] ;
281 for (int j = 0 ; j < 3 ; j++) {
282 int v = i n d i c e s [3∗ t + j] ;
283 ou t Ind i c e s [outPos++] = v ;
284 }
285 }
286 delete [] ou tTr iang l e s ;
287
288 return ou t Ind i c e s ;
289 }

89

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Listings
	Abbreviations
	Introduction
	Motivation
	Thesis structure

	Realtime rendering
	3D graphics APIs
	Triangle meshes
	Mesh geometry
	Triangle data formats
	Mesh drawing

	Ordering and format optimisations
	Caching of transformed vertices
	Vertex transforming overhead
	Previous work
	Measuring vertex caching
	Triangle reordering algorithms

	Vertex reordering
	Overdraw reduction
	Triangle data formats

	Problem statement and evaluation criteria
	Problem statement
	Evaluation criteria

	Triangle reordering algorithms
	The tipsify algorithm
	Forsyth's reordering algorithm
	Score function

	View independent overdraw reduction

	Memory usage
	The tipsify algorithm
	Forsyth's reordering algorithm

	Test setup
	Test environments
	Test models

	The behaviour of the tipsify algorithm
	Simulation results
	Choosing the optimal tipsify parameter

	Algorithm improvements and compromises
	The tipsify algorithm
	Dead-end stack
	Estimating the number of uncached vertices

	Forsyth's reordering algorithm
	Shrinking the cache table

	Comparison between tipsify and Forsyth's algorithm
	Similarities and differences
	Simulated results
	Algorithm run time performance
	Comparison conclusions

	Rendering performance tests
	Triangle reordering
	Vertex reordering
	Overdraw reduction
	Practical issues

	M3G integration
	General
	Integration
	Vertex reordering

	Testing of simple static M3G files
	Testing of ordinary applications

	Conclusions
	Summary of results
	Future work

	Swedish summary
	Bibliography
	Implementation of the tipsify algorithm
	Implementation of Forsyth's algorithm

